KIMCHI REFRIGERATOR SERVICE MANUAL ### **CAUTION** PLEASE READ CAREFULLY THE SAFETY PRECAUTIONS OF THIS MANUAL BEFORE CHECKING OR OPERATING THE REFRIGERATOR. **MODEL: GR-K192AF** # Safety regulations - 1. First check if there is any electric leakage in the refrigerator unit. - 2. Always unplug the refrigerator before handling any electricity conducting parts. - 3. When testing the refrigerator with the power on, use insulated gloves for safety. - 4. When using measuring instruments, check the rated current, voltage and capacity. - 5. Do not allow water or moisture to get into the mechanical or electrical parts of the refrigerator. - 6. Remove all things on top of the refrigerator before tilting it during repairs to avoid spills. Be especially careful for thin objects (glass sheet, book). - 7. When the refrigerating cycle is damaged, always request service to the major repair service agency. (This is to prevent the house from getting dirty from the gas within the cycle.) - 8. Always double check for repairs related to safety to ensure customer safety. # **Contents** | 1. Safety warnings and cautions | 3 | |---|----| | 2. Product specification | 6 | | 3. Product installation method | 7 | | 4. Circuit diagram | 8 | | 5. MICOM function and circuit description | 9 | | 6. Freezing cycle and refrigerant | 31 | | 7. General details about the product | 33 | | 8. Major repair method for freezing cycle | 35 | | 9. Characteristics of each part | 44 | | 10. Cautions for disassembling the product | 52 | | 11. Assembly diagram and service parts list | 53 | # Safety warnings and cautions ### Chapter 1. Safety warnings and cautions - ▶ Always observe the 'Safety Warnings' and 'Cautions', which hare intended to ensure safety while repairing or operating the product. - ▶ Precautions are classified into 'Warning' and 'Caution', as explained below. **A** Warning means a dangerous condition which could result in significant damage, injury or death if the instructions are not followed. **A Caution** Caution means a condition which could result in damage or injury if instructions are not followed. # **A** Warning ### Use caution to prevent electric shock The control panel (main PCB) uses 310V. When replacing PCB parts, wait at least 3 minutes after unplugging. Always unplug the refrigerator before repairing. ### Do not allow the consumer to repair, disassemble or modify the refrigerator. Damaged power plug can cause fire or electric shock. ### Make sure that the power plug is not pressed by the back of the refrigerator Power plug may be damaged and cause a fire or electric shock. ### Use a dedicated circuit. Overloading circuits or outlets could cause a fire. # Safety warnings and cautions ### **A** Warning # This product should always be grounded, when needed. If you think that there is a possibility of electricity leakage by water or moisture, always ground the unit. Do not store flammable liquid or gas in the refrigerator such as ether, benzene, alcohol, medicine, LP gas etc. It can cause an explosion or a fire. # Do not store medicine or academic material etc. in the refrigerator. Store an object that requires precise temperature control can cause deterioration in quality or unexpected reaction to cause a dangerous situation. # When disposing the refrigerator, remove the rubber packing on the door and do not leave it where children play. A child can be dangerously entrapped in the refrigerator. # Do not set items, particularly flower vase, cup, cosmetic or medicine on top of the refrigerator. It can cause fire and electric shock or cause an injury from dropping. # Do not stack items or carelessly store food on the refrigerator. Items stored on the refrigerator could fall and cause injury. # Safety warnings and cautions ### **A** Caution ### When using the refrigerator for low temperature in freezer or refrigerator, do not store bottles. Bottles can freeze and cause the bottles to crack, which can cause an injury. ### Always use exact replacement parts. Make sure that the model name, voltage, current and temperature ratings are correct for the electric part. # During repairs, be sure all connectors are tight and wires are properly routed. Make sure the connectors of the housing part are properly connected. ### Do not bend, modify, bend, pull or twist the power cord. It can cause fire or electric shock. # During repairs, remove all dust and foreign material from the housing part, connector part and check part. It can prevent problems such as tracking or short circuit. # Allow at least 5 minutes for resetting if you unplug the refrigerator. If can cause an overload to the condenser operation and cause problems. After 5 minutes # **Product specification** # **Chapter 2. Product specification** ### 2-1. GR-K192AF | ltem _ | | Item | GR-K192AF | | |---------------|---|---|-----------------------------|--| | | | | SPEC | | | Usable volume | | Usable volume | 188.8Li | | | Vol | lume | Left compartment | 94.3Li | | | | | Right compartment | 94.3Li | | | - | | Width | 922mm | | | | ernal
nsions | Depth | 699mm | | | | | Height | 883mm | | | Total w | veight | | 66kg | | | Motor | power con | sumption | 115W | | | Cooling | g method | | Direct cooling | | | Store/S | Season Electronic | | Electronic | | | Insulati | ion materia | on material CYCLO PENTANE | | | | Fresh \ | vegetable | getable basket 1 pc. | | | | Kimchi | i refrigerato | frigerator container 6 pcs. (6 large) | | | | Low ter | mperature | erature catalytic deodorizing system 2 pcs. | | | | П | Comp | Compressor NR58LBQH | | | | Freeze cycle | Evapo | orator | PIPE ON SHEET | | | э сус | Refrig | erant (amount) | R134a(145g) | | | le | Oil | | FREOL@15G(210cc) | | | | PTC | | P6R8MB | | | Electri | OLP | | 4TM412TFBYY | | | trical | Fan motor for compressor cooling | | ø110,3 blades attached | | | part | Left compartment seasoning heater | | 115V / 80W(Resistance:605Ω) | | | rating | Fan motor for compressor cooling Left compartment seasoning heater Right compartment seasoning heater | | 115V / 80W(Resistance:605Ω) | | | _ | Capac | citor (running) | 250VAC 10μF | | | | Capac | citor (starting) | 200VAC 50μF | | # **Product installation method** ### **Chapter 3. Product installation method** ### 3-1. Method to adjust height of refrigerator ■ First adjust the level of the refrigerator. (If the floor is uneven, the refrigerator may vibrate or cause noise.) ▶ Adjust the front to be leveled by turning the height adjustment screws under the front corners in the arrow direction. ### 3-2. Grounding method Plug the cord into a 115V grounded outlet. If you are unsure of the voltage or grounding integrity, consult a qualified electrician. ### Caution Take care not to ground the circuit at one of the following places: - **1. Water pipe:** If there is a plastic piping within the system, the ground may not be valid. - 2. Gas pipe: There is a danger of fire or explosion. - **3. Phone line or lightning rod:** If lightning strikes, dangerous voltage may be induced in the circuit. # Chapter 4. Circuit diagram # Chapter 5. MICOM function and circuit description ### 5-1. Function description 5-1-1. Display part | | Kimchi srore | | Vegetable/Fruit | | Light freezing | | Freezing food | | | | | | |-------------|--------------|--------|-----------------|-------|----------------|-------|---------------|--------|--------|------|-------|-------| | Notch | Min | Mid | Max | | Temperature | 0°C | -1.0°C | -2.0°C | 3.5°C | 2.5°C | 1.5°C | -4.0°C | -5.0°C | -6.0°C | -5°C | -18°C | -21°C | - 1. When the power is connected for the first time, it is set to "Lock", "Left compartment-Cabbage Kimchi-Mid" and "Right compartment-Cabbage Kimchi-Mid". - 2. During a power shut-down or when the power is reconnected, the refrigerator maintains the prior display. But in case of a power-shut down or power reconnection during rhythm fermenting, the temperature returns to "Mid" for the applicable food type. - 3. In "Lock" status, you will not hear a buzzer even when you press the buttons and the functions will not work. ### 5-1-2. Food storage/seasoning function ### (1) When selecting food type and storing temperature - 1. Press the "Lock/Unlock" button for more than 2 seconds to switch to "Unlock" status. - 2. Press the "Kimchi store" button to select "Mid" → "Max" → "Min" → "Mid", "Vegetable / Fruit" button "Mid" → "Max" → "Min" → "Mid", and "Feezing" button "Normal" → "Max" → "Ligth Freeaing" → "Normal" in sequence - 3. Press the "Lock/Unlock" button to complete the selection of food type and storing temperature. At this time, if a minute passes without pressing the "Lock/Unlock" button, it will automatically switch to Lock status and end the food type and storing temperature selection mode. ### (2) When selecting rhythm fermenting (seasoning) - 1. Press the "Lock/Unlock" button for more than 2 seconds to switch to "Unlock" status. - 2. At this condition, press "Fermentation" button to select "Normal = "→"Normal = "→"More = "→"Underground Fermentation = "→"Less = "→" Normal = "in sequence, and when the fermentation type is changed from "Less" to "Normal", the food type is selected by the order of "Cabbage kimchi" → "Radish kimchi" → "Broth kimchi" in sequence. However, "Underground Fermentation" is only for "Cabbage kimchi." - 3. Press the "Lock/Unlock" button to complete the rhythm fermenting (seasoning). At this time, if a minute passes without pressing the "Lock/Unlock" button, it will automatically switch to Lock status and end the rhythm ferment (seasoning) selection mode. - 4. When "Rhythmic fermentation" is terminated, the remaining time is displayed, and when the fermentation is completed, "0 hour" is displayed as the remaining time and the storing temperature is automatically set to "Mid ### (3) When selecting
flavor keeping - 1. Press the "Lock/Unlock" button for more than 2 seconds to switch to "Unlock" status. - 2. Select "Kimchi store" as storing type. (Flavor keeping function is only limited to "Kimchi store") - 3. At this time, press the "Flavor keeping" button to select or cancel the flavor keeping function. - 4. Press the "Lock/Unlock" button to end the flavor keeping selection mode. At this time, if a minute passes without pressing the "Lock/Unlock" button, it will automatically switch to Lock status and end the flavor keeping selection mode. - 5. If you select flavor keeping during seasoning process, it will immediately end the seasoning and switch to flavor keeping. At this time the storing temperature will automatically be set to "Mid". - 6. If you select the flavor keeping function, the refrigerator will lower the temperature to maintain the current Kimchi flavor. (-1 degrees for "Min", -0.5 degrees for "Mid" and -0 degrees for "Max".) - 7. During flavor keeping operation, a cold shock operation is done every 12 hours. - 8. If you select rhythm fermenting during flavor keeping, the flavor keeping function will be canceled. ### 5-1-3. When selecting power on/off function - 1. Press the "Lock/Unlock" button for more than 2 seconds to switch to "Unlock" status. - 2. At this time, press the "Power" button for more than 2 seconds to turn the power off. - 3. At this time, all the LEDs in the display will be turned off with the power off LED turning on. - 4. If you press the "Power" button when the power is off, it will turn on the power and recover to "Cabbage Kimchi" and "Mid" - 5. When the power is turned off, the heater of the applicable compartment is turned off and the valve will be closed. ### 5-1-4. Rhythm fermenting control pattern diagram - 1. The fermenting control pattern varies, depending on the temperature of the Kimchi when it is placed into the storage, the type of Kimchi being made and the degree of the seasoning selected. - 2. In the 1st seasoning cycle, if the Kimchi is at room temperature, the cold control operates. - 3. During the seasoning cycle, if the Kimchi is cold, the seasoning heater is turned on and if the Kimchi is warm, the seasoning heater is turned off. (Only 1st seasoning and 2nd seasoning) - 4. If a failure occurs, such as a sensor error during seasoning, the storage will default to Cabbage Kimchi storage status. ### 5-1-5. Temperature control method - 1. The compressor runs or stops and the 3-way valve opens or closes depending on the temperature sensed in the left and right compartment. - 2. If the temperature in either compartment is unsatisfactory, the compressor is turned on and the 3-way value is opened to the affected compartment. - 3. If the temperature in both compartments is unsatisfactory, the compressor is turned on and runs until both compartments become satisfactory. The 3-way valve is opened and closed to each compartment alternatively until the temperature is satisfactory. - 4. During the seasoning cycle, if the temperature is low, the heater is turned on and if the temperature is high, the compressor is turned on and the 3-way value is opened. | Left compartment temperature | Right compartment temperature | 3-Way valve position | COMP | |------------------------------|-------------------------------|--------------------------|------| | Satisfactory | Satisfactory Satisfactory | | OFF | | Satisfactory | Unsatisfactory | Right compartment | ON | | Unsatisfactory | Satisfactory | Left compartment | ON | | Unsatisfactory | Unsatisfactory | Left 20 min/Right 20 min | ON | Note1) When the temperature is satisfactory in both compartments, the 3-way valve is open to whichever compartment that has had a satisfactory temperature most recently. ### ■ Summary chart of COMP and 3-Way valve operation ### 5-1-6. Buzzer sound When you press a button on the front display, you will hear a varying buzzer sound depending on the type and function. (Refer to Buzzer operating circuit in p21). ### 5-1-7 Power failure compensation function - 1. When the power is restored after an outage, the refrigerator performs the setting originally programmed except for Error status and Test mode. - 2. If the power fails during the seasoning process, there is not power outage compensation function and the storage defaults to previously set Kimchi type and temperature of "Mid". (to protect excessive seasoning) ### 5-1-8. Operation in response to ambient temperature The storage senses the ambient temperature and adjusts the temperature in the compartments accordingly. This keeps the storage from being too cold or too warm because of seasonal variations and maintains exact temperatures in the compartments. ### 5-1-9. Sequential operation of components Components (compressor, 3-way valve and left/right seasoning heater) are operated in a specific order to prevent damage and noise caused by simultaneous operation of all parts when the unit is started and after completing the self-test routine. ^{*} Operation order may slightly vary depending on temperature setting. ### 5-1-10. Error diagnosis function - 1. The error diagnosis function is the function to support SVC in case of an error that can affect the performance of the product. - 2. If an error occurs, the control panel button will not work. - 3. If an error occurs and is resolved, the refrigerator will default to the normal status. (The unit is reset.) - 4. The error codes are shown in segment for the remaining seasoning time display of the right compartment, and all LEDs, except for failure code, are turned off. | NO | Item | Error code display | Error contents | | | | | |----|---|--|---|--|--|--|--| | 1 | Failure of left compartment sensor (R1). | Displays "E1" on the seasoning remaining time part | Left compartment lid sensor disconnected or short circuited | | | | | | 2 | Failure of right compartment sensor (R2). | Displays "E2" on the seasoning remaining time part | Left compartment lid sensor disconnected or short circuited | | | | | | 3 | Failure of ambient
temperature
sensor (RTS) | | case of an ambient temperature sensor error, the error code is not displayed and press the left and right npartment "Store" buttons for more than 1 second when checking the LED. | | | | | | 4 | Communications error | Only LED for "E1" and "E2" was on | When communication is not working continuously for 30 sec | | | | | Note 1) The failure code is not displayed for the outside temperature sensor failure, but for 'LED CHECK' (by pressing and holding "Kimchi store" button on the left chamber and "Kimchi store" button on the right chamber together for one second or longer). If the outside temperature sensor is normal, all LEDs are turned ON, but if abnormal, all LEDs are turned ON with the remaining time display on the right chamber OFF. ### 5-1-11. Test function - 1. The test function checks the functions of the PCB and the refrigerator, searching for errors in parts. - 2. The test switch on the PCB operates the test mode. The refrigerator reverts to the normal mode after 2 hours if you forget to end it manually. - 3. When the test mode is active, the buttons on the control panel are disabled but the buzzer still sounds a ding if one is pressed. - 4. When the test mode is completed, unplug the refrigerator briefly and plug it in again to reset it and allow normal operation. - 5. If a sensor failure or other failure is detected during the test mode, release the test mode to display the failure code. - 6. During the display of the error code, test mode does not work even if you press the Test switch. | Mode | Operation | COMP fan motor | VALVE | Left and Right seasoning heater | DIAPLAY LED | Remarks | | |-----------------|--|---|--|---------------------------------|----------------------------|--|--| | TEST1 | Press the test
switch once | ON | Left compartment
20minute / Right
compartment 20
minute | OFF | Error code
display "11" | This test checks the refrigeration system for the left and right compartments. | | | TEST2 | Press the test
switch once when
Test 1 indicates it
is completed. | ON | Right
compartment
valve OPEN | OFF | Error code
display "22" | This test checks the refrigeration system for the right compartment only. | | | TEST3 | Press the test
switch once when
Test 2 indicates it
is completed. | ON | Left compartment valve OPEN | OFF | Error code
display "33" | This test checks the refrigeration system for the left compartment only. | | | TEST4 | Press the test
switch once when
Test 3 indicates it
is completed. | OFF | ** | ON | Error code
display "44" | This test checks the seasoning heaters. | | | Normal recovery | Press the test
switch once when
Test 4 indicates it
is completed. | After a maximum of 30 minutes or when the temperature of the compartments is higher than 40C°, the storage will default to its initial status. The compressor operates after a delay of 7 minutes. | | | | | | ### * LED CHECK function All LEDs are turned ON by pressing and holding "Kimchi store" button on the left chamber and "Kimchi store" button on the right chamber together for one second or longer. When these buttons are released, the LED returns to the previous state. ### 5-2. Circuit description ### 5-2-1. Power circuit
The power circuit consists of the noise attenuation part and the SMPS (Switch Mode Power Supply) part. The SMPS consists of the rectifier (BD1 & CE1) to convert AC voltage to DC voltage, switching part (IC3) to switch the converted DC voltage, transformer to transmit energy of the first side of the switching end to the second side, the secondary power to supply power to MICOM and IC, and the feedback part (IC4) to feedback the secondary voltage to the first side of the transformer in order to maintain the secondary voltage constant. Caution : High voltage (DC 310V) is maintained in this circuit. Wait at least 3 minutes after unplugging to allow the current to dissipate. There is a danger of electric shock. ### 5-2-2. Oscillation circuit The oscillation circuit provides the clock signal for synchronization and calculation of time in relation to the logic elements of microprocessor IC1 (MICOM). OSC1 must always use the original rated parts, because if the specification changes, the timing generated will not be correct, causing erratic functioning of the microprocessor. ### 5-2-3. Reset circuit The reset circuit allows the entire process to be started from the initial status by resetting the various elements within the MICOM (IC1), such as RAM, whenever power is applied to the unit. Low voltage is applied to the reset terminal for 10ms at the beginning of the power input. The reset terminal has a voltage of 5 V during general operation. (If the reset operation fails, the microprocessor will not operate.) ### 5-2-4. Load/Buzzer driving circuit ### (1) Load driving circuit | Type of load COMP. fa | | COMP. fan motor | Left seasoning heater | Right seasoning heater | | | |-----------------------|--------------|-----------------|-----------------------|------------------------|--|--| | Measuring point (IC7) | | 13 10 | | 11 | | | | Status | ON Within 1V | | | | | | | Status | OFF | 12V | | | | | ### (2) Buzzer driving circuit (located on display PCB) * Only the buzzer sound for the Lock/Unlock operation is shown in this SVC technical manual. ### 5-2-5. Switch input circuit The following circuit is the input circuit to detect the test switch signal to check the refrigerator. ### 5-2-6. Temperature sensor circuit The following temperature sensor circuit consists of a sensor to detect the outside (ambient) temperature and sensors in the left and right compartments for storing and seasoning Kimchi. The status of each sensor, whether open or shorted, is shown below. | Sensor | Check point | Normal(-30°C~50°C) | Shorted | Open | |--------------------------|-------------------|--------------------|---------|------| | Left compartment sensor | POINT (A) Voltage | | | | | Right compartment sensor | POINT B Voltage | 0.5V~4.5V | 0V | 5V | | Outside sensor | POINT © Voltage | | | | ### 5-2-7. Stepping motor operation circuit (3-way valve) ▶ The motor is operated by sending out "High" and "Low" signals as many as the designated number of steps through MICOM Pin 15, 16, 17, 18 to rotate the motor through the magnetic field formed by the motor and the coil wrapped around each stator. ### 5-2-8. Power failure compensation circuit (located on display PCB) ▶ The power failure compensation circuit recalls the temperature range of the right and left compartments and maintains these levels if power if interrupted briefly. The IC for power failure compensation (EEPROM) delivers to and maintains the information in MICOM through the serial interface. ### 5-2-9. Storing temperature compensation and over-cool/under-cool cut compensation circuit ### (1) Storing temperature compensation ► This is the circuit to input the temperature compensation level required for adjusting storage temperature at the left or right compartment. | Left compartment | Right compartment | Temperature | Remarks | |------------------|-------------------|--------------------|----------------------| | (RCL) | (RCR) | compensation value | Komano | | 180 F | Ω | +2.5 °C | Warmer | | 56 K | Ω | +2.0 °C | | | 33 K | Ω | +1.5 °C | A | | 18 K | Ω | +1.0 °C | | | 12 K | Ω | +0.5 °C | | | 10 K | Ω | 0 °C | Standard temperature | | 8.2 k | Ω | -0.5 °C | | | 5.6 k | Ω | -1.0 °C | | | 3.3 k | Ω | -1.5 °C | ♥ | | 2 K | Ω | -2.0 °C | Cooler | | 470 | Ω | -2.5 °C | | ► Temperature compensation table by adjustment of resistance value (difference against current temperature) Ex) If you change the resistance of compensation at the left compartment (RCL) from 10KΩ (current resistance) to 18KΩ (adjusted resistance), the storage temperature in the left compartment will be increased by 1°C. | Classification | Modified resistance Current resistance | | 2ΚΩ | 3.3 ΚΩ | 5.6 ΚΩ | 8.2 ΚΩ | 10 ΚΩ | 12 ΚΩ | 18 ΚΩ | 33 ΚΩ | 56 ΚΩ | 180 ΚΩ | |----------------------|--|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------| | | 470ΚΩ | No change | 0.5°C UP | 1°C UP | 1.5°C UP | 2°C UP | 2.5°C UP | 3°C UP | 3.5°C UP | 4°C UP | 4.5°C UP | 5°C UP | | Left | 2 ΚΩ | 0.5°C DOWN | No change | 0.5°C UP | 1°C UP | 1.5°C UP | 2°C UP | 2.5°C UP | 3°C UP | 3.5°C UP | 4°C UP | 4.5°C UP | | compartment
(RCL) | 3.3 ΚΩ | 1°C DOWN | 0.5°C DOWN | No change | 0.5°C UP | 1°C UP | 1.5°C UP | 2°C UP | 2.5°C UP | 3°C UP | 3.5°C UP | 4°C UP | | | 5.6 ΚΩ | 1.5°C DOWN | 1°C DOWN | 0.5°C DOWN | No change | 0.5°C UP | 1°C UP | 1.5°C UP | 2°C UP | 2.5°C UP | 3°C UP | 3.5°C UP | | £TT | 8.2 ΚΩ | 2°C DOWN | 1.5°C DOWN | 1°C DOWN | 0.5°C DOWN | No change | 0.5°C UP | 1°C UP | 1.5°C UP | 2°C UP | 2.5°C UP | 3°C UP | | fŪ | 10 ΚΩ | 2.5°C DOWN | 2°C DOWN | 1.5°C DOWN | 1°C DOWN | 0.5°C DOWN | No change | 0.5°C UP | 1°C UP | 1.5°C UP | 2°C UP | 2.5°C UP | | Dialet | 12 ΚΩ | 3°C DOWN | 2.5°C DOWN | 2°C DOWN | 1.5°C DOWN | 1°C DOWN | 0.5°C DOWN | No change | 0.5°C UP | 1°C UP | 1.5°C UP | 2°C UP | | Right compartment | 18 ΚΩ | 3.5°C DOWN | 3°C DOWN | 2.5°C DOWN | 2°C DOWN | 1.5°C DOWN | 1°C DOWN | 0.5°C DOWN | No change | 0.5°C UP | 1℃UP | 1.5°C UP | | (RCR) | 33 ΚΩ | 4°C DOWN | 3.5°C DOWN | 3°C DOWN | 2.5°C DOWN | 2°C DOWN | 1.5°C DOWN | 1°C DOWN | 0.5°C DOWN | No change | 0.5°C UP | 1°C UP | | | 56 KΩ | 4.5°C DOWN | 4°C DOWN | 3.5°C DOWN | 3°C DOWN | 2.5°C DOWN | 2°C DOWN | 1.5°C DOWN | 1°C DOWN | 0.5°C DOWN | No change | 0.5°C UP | | | 180 ΚΩ | 5°C DOWN | 4.5°C DOWN | 4°C DOWN | 3.5°C DOWN | 3°C DOWN | 2.5°C DOWN | 2°C DOWN | 1.5°C DOWN | 1°C DOWN | 0.5°C DOWN | No change | ### (2) Over-cool/Under-cool cut compensation | Left compartment cut compensation | | | Right compartmen | t cut compensation | | |-----------------------------------|-------------------------|---|------------------------|-------------------------|--| | Over-cool compensation | Under-cool compensation | Left compartment storing temperature compensation | Over-cool compensation | Under-cool compensation | Right compartment storing temperature compensation | | JCL1 | JCL2 | | JCR1 | JCR2 | | | CUT | ٥ | +1°C | CUT | 6 | +1°C | | 6 | CUT | -1°C | 6-9 | CUT | -1°C | | CUT | CUT | 0°C | CUT | CUT | 0°C | | 6-3 | 6 | 0°C (Factory default) | 6-6 | 60 | 0°C (Factory default) | [▶] The cut compensation circuit compensates the storing temperature of the left or right compartment by simply cutting it out of service for a brief period. ### 5-2-10. Communication circuit between main PCB and display PCB This circuit provides communications between the MICOM on the main PCB and the MICOM of the display PCB. If there is no communication between these boards for 30 seconds, a communication error occurs. # PWB(PCB) ASSEMBLY, MAIN PWB(PCB) ASSEMBLY, DISPLAY CON101 C ### 5-2-11. Button input and display part illumination circuit This circuit determines which buttons are pressed and drives the LED display, whose driving method is a scan method. ### 5-3. Sensor resistance characteristics table | Measuring temperature (°C) | Left sensor, right sensor, outside sensor | |----------------------------|--| | | Left Serisor, fight Serisor, Outside Serisor | | -20°C | 77 ΚΩ | | -15°C | 60 KΩ | | -10°C | 47.3 ΚΩ | | -5°C | 38.4 ΚΩ | | 0°C | 30 ΚΩ | | +5°C | 24.1 ΚΩ | | +10°C | 19.5 ΚΩ | | +15°C | 15.9 ΚΩ | | +20°C | 13 ΚΩ | | +25°C | 11 ΚΩ | | +30°C | 8.9 ΚΩ | | +40°C | 6.2 ΚΩ | | +50°C | 4.3 ΚΩ | - ▶ The tolerance of the sensor resistance is ±3%. - ▶ Measure the resistance value of the sensor after leaving it for more than 3 minutes (delay is required due to sensing speed.) - ▶ Always use a digital tester. Analog testers have a higher margin of error. - ▶ For left and right sensor, measure both sensor ends of the connector after separating the connectors of CON2 and 3 of PWB (PCB) assembly and main part. For the outside sensor, measure end of 2 and 5 of CON5. ### 5-4. PCB parts diagram and parts list 5-4-1. PWB (PCB) assembly and main parts diagram (The parts diagram can slightly change according to the situation.) ### 5-4-2. PWB (PCB) assembly and main parts list * The parts list can slightly change according to the situation. | N | М | L | J | Н | G | WORK | | | | | | |-------------------|----------|---------------------|----------------|----------------|----------------|-------------|----------------------------|--|---|--|------------------------------------| | | | (X) | \vdash | | | | | | | | | | 第 00倍 | 200(場長X) | VIVA3 CK 180(냉동기능X) | VIVA3 IU(160L) | VIVA3 IU(200L) | (180 | ΑΤΙ | | | | | | | 8
E | 1 8 | 08 X | ≘ | 3 10 | 11 E | LIC, | | | | | | | VIVA3 CK 160(냉동X) | VIVA3 | VIVA3 (| <u> </u> | ۸I۸ | VIVA3 IU(180L) | APPLICATION | | | | | | | - | Qty | 0+1/ | 0+11 | 0+1 | | - | P/N0 | DESCRIPTION | SPEC | MAKER | REMARK | | 1 | 1 | 1 | 1 |
Qty
1 | 1 | 1 | 6870JB8105B,C | | IU-PJT MAIN PCB | DOOSAN | FR1,1.6T | | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 6170JB2010C | TRANSFORMER,SMPS[COIL | A3-PJT 12.5V 1A | 한영전자 | TRANS | | 1 | 1 | 1 | 1 | 1 | 1 | 3 | | CONNECTOR (CIRC), WAFE | YW396-09AV | YEON HO | CON1 | | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 6630VM04107
6630VM04208 | CONNECTOR (CIRC),WAFE CONNECTOR (CIRC),WAFE | YW396-07AV(7P-1,2,5,7)
YW396-08AV(8P-1,3,6,8),RED | YEON HO
YEON HO | CDN2
CDN3(RED) | | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 6630JB8004E | CONNECTOR (CIRC), WAFE | SMW250 YEONHO 6P 2.5MM STRAIGHT | YEON HO | CDN4 | | 1 - | 1 - | 1 - | 1 - | 1 - | 1 | 7
8 | | CONNECTOR (CIRC),WAFE IC,DRAWING | SMW250 YEONHO 5P 2.5MM STRAIGHT
TMP87C809N 28P,SDIP BK IU-PJT A6 | YEON HO
TOSHIBA | CDN5
IC1 | | - | - | - | - 1 | 1 | - | 9 | | IC,DRAWING | TMP87C809N 28P,SDIP BK IU-PJT A3 | TOSHIBA | IC1 | | = | - | - | 1 | - | - | 10 | 0IZZJB2057 | IC,DRAWING | TMP87C809N 28P,SDIP BK IU-PJT A4 | TOSHIBA | IC1 | | 1 | 1 | 1 | 1 | 1 | 1 | 11 | | IC,KEC | | KEC
KEC | IC6 | | 1 | 1 | 1 | 1 | 1 | 1 | 13 | | IC,KEC | KID65003AP "18P,SDIP" BK DRIVE | KEC | IC7 | | 1 | 1 | 1 | 1 | 1 | 1 | 14 | 01TD623080C | IC,DRAWING | 62308 16PIN SDIP BK DRIVE IC ST | TOSHIBA | IC8 | | 1 - | 1 | 1 | 1 - | 1 | 1 | 15
16 | | IC,POWER MANAGEMENT IC,KEC | SL431M KODENSHI 3PIN,TO-92M 2.495V
KIA431 3 PIN TP | 광전자
KEC | IC5
IC5 | | 1 | 1 | 1 | 1 | 1 | 1 | 17 | | IC,POWER MANAGEMENT | PS2561-1 NEC 4P,DIP BK = TLP762 | NEC | IC4 | | 1 | 1 | 1 | 1 | 1 | 1 | 18 | | RESUNATUR,CERAMIC | CSTS0400 MURATA 4MHZ +/-0.5% TP | MURATA | □SC1 | | 1 | 1 | 1 | 1 | 1 | 1 | 19
20 | 6102JB8001B
6920000001A | VARISTOR
RELAY | INR14D621 ILJIN 620V 10% WORLD
ALE15B12 MATSUSHITA 250VAC 16A | IL JIN
MATSUSHITA | VA1
RY1 | | 2 | 2 | 2 | 2 | 2 | 2 | 21 | | RELAY | G5N-1A DMRDN (JAPAN)DC12V 16.7 | | RY3,4 | | 1 | 1 | 1 | 1 | 1 | 1 | 22 | | IC,POWER MANAGEMENT | STR-A6351 SANKEN 8 DIP ST SMPS | SANKEN | IC3 | | 1 | 1 | 1 | 1 | 1 | 1 | 23 | | TRANSISTOR,BIPOLARS DIODE,RECTIFIERS | KRC 106M KEC D3SBA60 BK SHINDENGEN 600V 4A | KEC
SHINDENKEN | Q3
BD1 | | 1 | 1 | 1 | 1 | 1 | 1 | 25 | 0DRSA00070A | DIODE,RECTIFIERS | RL2 SANKEN BK NON 400V 2A 40A 5 | SHINDENKEN | D3 | | 2 | 2 | 2 | 2 | 2 | 2 | 26 | | DIODE,RECTIFIERS | FR107 TP DELTA DII41 1000V 1A 3 | DELTA/명창 | D1,2 | | 1 | 1 | 1 | 1 | 1 | 1 | 27
28 | | DIODE,RECTIFIER
CAPACITOR,FIXED ELECT | RECT1N4004 TP
47UF HE 450V 20% BULK SNAP IN | DELTA/명창
RUBICON,SAMHWA/SAMYOUNG | D4
CF1 | | 1 | 1 | 1 | 1 | 1 | 1 | 29 | 0CE687YH6E0 | CAPACITOR, FIXED ELECT | 680UF RX 25V 20% BULK SNAP IN | RUBICON,SAMHWA/SAMYOUNG | | | 1 | 1 | 1 | 1 | 1 | 1 | 30 | | | 220UF KME TYPE 16V 20% FM5 TP 5 | RUBICON,SAMHWA/SAMYOUNG | | | 3 | 3 | 3 | 3 | 3 | 3 | 31
32 | | | 22UF KME TYPE 50V 20% FM5 TP 5
10UF KM TYPE 50V 20% FM5 TP 5 | RUBICON,SAMHWA/SAMYOUNG
RUBICON,SAMHWA/SAMYOUNG | | | 1 | 1 | 1 | 1 | 1 | 1 | 33 | 0CQ33418670 | CAPACITOR,FIXED FILM | 0.33UF D 275V M M/PP NI R | PILKO | CM1 | | 1 | 1 | 1 | 1 1 | 1 | 1 | 34
35 | | CAPACITOR,POLYESTER CAPACITOR,POLYESTER | 47000PF S 630V J M/PE NI R
0.22UF D 100V M M/PE NI R | | CM3
CC6 | | 1 | 1 | 1 | 1 | 1 | 1 | 36 | | CAPACITOR, CERAMIC (HI | 4700P 2KV K B S | | CC5 | | 3 | 3 | 3 | 3 | 3 | 3 | 37 | 0CK2230K949 | CAPACITOR,FIXED CERAM | 22NF 50V Z F TA52 | TAE YANG | CC9,10,12 | | 6 | 6 | 6 | 6 | 6 | 6 | 38
39 | 0CK1040K949
0CK4710K519 | CAPACITOR,FIXED CERAM CAPACITOR,CERAMIC (HI | 0.1UF D 50V 80%,-20% F(Y5V) TA5
470PF 50V K B TA52 | TAE YANG
TAE YANG | CC2,3,4,7,8,11
CC1 | | 1 | 1 | 1 | 1 | 1 | 1 | 40 | | | 1N5232B MOTORORA TP DO34 0.5W 5 | DELTA/평창 | ZD1 | | 1 | 1 | 1 | 1 | 1 | 1 | 41 | | RESISTOR, FIXED METAL | 56K DHM 2 W 5.00% F20 | SMART | R2 | | 1 | 1 | 1 | 1 | 1 | 1 | 42 | 0RS4703J609
0RS0121J609 | RESISTOR,FIXED METAL RESISTOR,FIXED METAL | 470K | | R3
RDCP | | 1 | 1 | 1 | 1 | 1 | 1 | 44 | 0RD0822G609 | RESISTOR, FIXED CARBON | 82 DHM 1/4 W 5.00% TA52 | SMART | R4 | | 1 | 1 4 | 1 4 | 1 | 1 | 1 4 | 45 | | | 680 DHM 1/4 W 5.00% TA52 | | R6 | | 1 | 1 | 1 | 1 | 1 | 1 | 46
47 | 0RD2001G609
0RD4701G609 | RESISTOR, FIXED CARBON
RESISTOR, FIXED CARBON | 2K DHM 1/4 W 5.00% TA52
4.7K DHM 1/4 W 5.00% TA52 | | R13,14,30,31
R11 | | 1 | 1 | 1 | 1 | 1 | 1 | 48 | 0RD6801G609 | RESISTOR, FIXED CARBON | 6.8K OHM 1/4 W 5.00% TA52 | SMART | R5 | | 1 | 1 | 1 | 1 1 | 1 | 1 | 49
50 | | | 1M DHM 1/4 W 5.00% TA52
1M DHM 1/6 W 5.00% TA52 | | R1
R12 | | 1 | 1 | 1 | 1 | 1 | 1 | 51 | | | 10K DHM 1/4 W 5.00% TA52 | | RCL | | 1 | 1 | 1 | 1 | 1 | 1 | 52 | 0RD1002G609 | RESISTOR, FIXED CARBON | 10K □HM 1/4 W 5.00% TA52 | SMART | RCR | | 1 2 | 1 | 1 2 | 1 2 | 1 | 1 | 53
54 | 0RN1002G409
0RN2612G409 | RESISTOR,FIXED METAL RESISTOR,FIXED METAL | 10K DHM 1/4 W 1.00% TA52
26.1K DHM 1/4 W 1.00% TA52 | | RT1
RR1,RR2 | | 16 | 16 | 16 | 16 | 16 | 16 | 55 | 0RD1002G609 | RESISTOR, FIXED CARBON | 10K DHM 1/4 W 5.00% TA52 | SMART | R15~29,33 | | 2 | 2 | 2 | 2 | 2 | 2 | 56 | 0RD1001G609 | | 1K DHM 1/4 W 5.00% TA52 | | R8,32 | | 1 | 1 | 1 | 1 | 1 | 1 | 57
58 | | RESISTOR,FIXED CARBON
RESISTOR,FIXED METAL | 1.8K OHM 1/4 W 5.00% TA52
2.2K OHM 1/4 W 1.00% TA52 | | R7
R10 | | 1 | 1 | 1 | 1 | 1 | 1 | 59 | 0RN9101G409 | RESISTOR, FIXED METAL | 9.1K DHM 1/4 W 1.00% TA52 | SMART | R9 | | 1 | 1 | 1 | 1 | 1 | 1 | 60 | 6210JB8001A | CORE (CIRC),BEAD | BFS3510A0 SAMWHA 35X10MM AXIAL | | FB1 | | 1 | 1 | 1 | 1 | 1 | 1 | 61
62 | 6600RRT001W
6200JB8003A | SWITCH,TACT
FILTER(CIRC),NDISE | THVV502GAA POSTECH 12V DC 50MA
3A 3MH 250V CV430030 A345-PJT C | POSTEC
TNC | TEST
L1 | | 1 | 1 | 1 | 1 | 1 | 1 | 63 | 0FZZJB3001A | FUSE | 250V 2A SLOW-BLOW LITTELFUSE,T | ULMAZ | FUSE1 | | 9 | 9 | 9 | 9 | 9 | 9 | 64
65 | 43607015
43607015 | WIRE,JUMP
WIRE,JUMP | GC10 WHITE T0.6 L10 FOR A INSR
GC10 WHITE T0.6 L10 FOR A INSR | 10MM
12.5MM | J01~05,07,08,10,15
J06.09.11~14 | | 4 | 4 | 4 | 4 | 4 | 4 | 66 | 43607015 | | 0.6MM 10MM | 10MM | JCL1,2,JCR1,2 | | 2 | 2 | 2 | 2 | 2 | 2 | 67 | 43607015 | JUMP WIRE | 0.6MM 10MM | 10MM | J30,40 | | - | 1 | 1 | _ | _ | _ | 68
69 | | IC,DRAWING
IC,DRAWING | TMP87C809N 28P,SDIP BK VIVA3 CK180 | TOSHIBA
TOSHIBA | IC1
IC1 | | 1 | - | _ | - | = | = | 70 | | IC,DRAWING | | | IC1 | | | | | | | | | | | | | | ### 5-4-3. PWB (PCB) assembly and display parts diagram and parts list * The parts list can slightly change according to the situation. | | - | | | | | | |--|--|--
--|--|--|--| | | | P/N0 | DESCRIPTION | SPEC | MAKER | REMARK | | | | EAX30618501 | PWB(PCB) | 06 TRINITYI DRAWER TYPE LED MODULE | DOOSAN (SUNGSIN) | FR4 | | | 2 | MGW31191601 | REFLECTOR, PCB | MOLD NA NORYL SUPER WHITE NO H;14.3mm | HAENG SUNG | NORYL | | | 3 | MGW31191602 | REFLECTOR, POB | MOLD NA NORYL SUPER WHITE NO H;14mm | HAENG SUNG | NORYL | | | 4 | MFT31175401 | Name Plate | "O6 IRINITY Chest TYPE R-KI9, 20*** [FRAKSTD LEFT] "06 IRINITY Chest TYPE R-KI9, 20*** [FGT A/B LEFT] "06 IRINITY Chest TYPE R-KI9, 20*** [FGT C LEFT] "06 IRINITY Chest TYPE R-KI9*** [Moder Color LEFT] | HAENG SUNG | 토고울70%
토고울70%
토고울70%
투고울70% | | | 7 I | MFT31175406 | Name Plate | '06 TRINITY Chest TYPE R-KI9,20*** (FGT A/B LEFT) | HAENG SUNG | 투과율70% | | | 1 1 | MFT3II75409 | Name Plate | '06 TRINITY Chest TYPE R-KI9,20***(FGT C LEFT) | HAENG SUNG | 투괴율70% | | \Box | 11 | MFT31175410 | Name Plate | '06 TRINITY Chest TYPE R-KI9*** (Moder Color LEFT) | HAENG SUNG | 투괴용70% | | 1 1 | 5 | EAD31433101 | Drawing, Assembly | JOINT TRINITYI-PJT DISPLAY JOINT - | HAENG SUNG | Harness JOINT | | \vdash | 6 | | ar ar riggressering | | | | | \vdash | 1 7 | | | | | | | \Box | 8 | 6630A09I59D | CONNECTOR (CIRC), WAFER | SUNZEO YEONHO ED 2 FUM (ANGLE TYPE) | YEON HO | CONIOI | | \vdash | 9 | 6630JB8004P | CONNECTOR (CIRC) WAFER | SAM250 IEST 2 SAM ID STRAIGHT DID DV WHITE | YEON HO | CONIO2 | | 15.1 | 1 | 6630AQ9I59P | CONNECTOR (CIRC), WAFER CONNECTOR (CIRC), WAFER | SMW250 YEONHO SP 2.5WM (ANGLE TYPE)
SMW250 ISP 2.5WM IR STRAIGHT DIP BK WHITE
SWAW250 ISP 2.5WM ANGLE | YEON HO | CONICE | | \vdash | 10 | 6630A091596 | CONNECTOR (CIRC), WAFER | DWW.CO OD 2 COM MAI E TADE | YEON HO | CONIO3 | | H | Ηř | 6630JB8004E | CONNECTOR (CIRC) WAFER | | YEON HO | CONIO4 | | \vdash | 12 |
dustributo4L | CONNECTOR (CINC), WALLY | SWINZOO OF ZIJONWIN STONIONI DIE DA WHITE | ILON TIO | CONIO | | Н | 13 | E4401401207 | IC DOAWING | TMP86FS49F TOSHIBA 64P BULK Fresh TRINITYI 190L | TOSHIBA | ICIOI | | H | 14 | EAN3I43I207
EAN3I43I20I
EAN3I43I202 | IC, DRAWING IC, DRAWING | THEOCECAGE TOCHIDA CAD DILLY F TONITYI 100L | TOSHIBA | ICIOI | | \vdash | 15 | EANJI4JIZUI | IC DOAWING | | TOSHIBA | ICIOI
ICIOI | | \vdash | 16 | | IC, DRAWING | TMP86FS49F TOSHIBA 64P BULK Fresh TRINITYI 160L | | | | \vdash | 17 | EAN31431206 | IC, DRAWING | IMPSOFS49F TUSHIBA 64P BULK FRESN TRINITITI IBUL | TOSHIBA | ICIOI | | + | | OIPMGKE028A | IIO CTURIO I OCIO | WARDS OFF HER COME OUT OF BUTTON THE HEALT TOO | 1450 | 10100 | | + | 18 | UIPMGKEU2BA | IC, STANDARD LOGIC IC, STANDARD LOGIC | KIA79LOSF KEC 3PIN SOT-89 R/TP 5V ISOMA REGULATOR KIA7042AF KEC SOT-89 TP RESET IC | KEC
KEC | ICI02 | | | 19 | OISTLKE003A | IIC,STANDARD LOGIC | KIA/04ZAF KEU SUI-89 IP HESET IU | | ICI03 | | 1 ' 1 | 20 | 0196934660D | IIC, SGS- IHUMSON | | ST | ICI04 | | \perp | \vdash | 01RH934600D | IC,ROHM | BR93LC46RF-W 8PIN SOP BK EEPROM - | ROHM | | | \vdash | 21 | | | | | | | 2 | 22 | OISTLMIOOIB | IC,STANDARD LOGIC | TD62783AF TOSHIBA IB R/TP CONVERT | TOSHIBA | ICI05,107 | | \perp | \perp | 0lKE657830B | IC,STANDARD LOGIC | | KEC | | | 3 | 23 | 01KE650030C | HC-KEC | IKIDESOUJAF IESOP BK /CH DRIVER | KEC | ICI06,108,109 | | \perp | \perp | OISTL00066A | IC, STANDARD LOGIC IC, STANDARD LOGIC | | TOSHIBA | | | | 24 | OISTLKE004A | IC,STANDARD LOGIC | PRINCE MEC COT-22 TO TRANSISTROY DTAIA22CA COT-22 | KEC/ CHANGJIANG | Q102 | | 9 | 25 | OISTLKE005A
OISTLKE006A | IC,STANDARD LOGIC | KRCIOGS KEC SOT-23 TP TRANSISTOR/ DTCI43ZCA SOT-23 | KEC/ CHANGJIANG | 0101,103,104,111-116 | | 6 | 26 | OISTLKE006A | IC,STANDARD LOGIC | KTAI298 KEC SOT-23 TP TRANSISTOR | KEC/ CHANGJIANG | Q105-110 | | | 27 | 6212BB3245A | IC,STANDARD LOGIC IC,STANDARD LOGIC RESONATOR,CERAMIC | CSTCR4M00G53-R0 MURATA 4.0MHZ +/- 0.5% T/R SMD | MURATA | OSCIOI | | \Box | 28 | | | | | | | \Box | 29 | | | | | | | | 30 | i e | | | | | | \Box | 31 | OCEIO7VF6DC | CAPACITOR, FIXED ELECTR | 100UF MV 16V 20% R/TP(SMD) SMD
47UF MV 25V 20% R/TP(SMD) SMD
100MF 2012 50V 80%, -20% R/TP (YSV)
INF 2012 50V 80%, -20% R/TP X7R | SAMHWA, RUBYCO, G-LUXON | Œ102 | | \Box | 32 | OCE476VF6DC | CAPACITOR, FIXED ELECTR CAPACITOR, FIXED CERAMI | 47LF MV 25V 20% R/TP(9MD) 9MD | SAMHWA, RUBYCO, G-LUXON | 0F103 | | 8 | 33 | OCKIO4DK94A | CAPACITOR FIXED CERAMI | 100NF 2012 50V 80V -20V R/TP F(Y5V) | MURATA | CC101-108 | | 3 | 34 | OCKIO2DK96A | CAPACITOR, FIXED CERAMI | INF 2012 50V 90V -20V P/TP Y7P | MURATA | CCIO9-III | | H | 35 | CONTOCUENCION | CAN ACTION TO TAKE COLUMN | IN EDIE SON CON, EDIE IN III AM | MONTA | COIOS III | | \vdash | 36 | | | | | | | - | 37 | | | | | | | 6 | 38 | | RESISTOR, METAL GLAZED (CHIP) | I5KOHM I/8 W 5% 2012 R/TP | SMART, ROHM | RI08-113 | | 1 | 39 | 0RJ0000E672 | RESISTOR, METAL GLAZEDI (CHIPT
RESISTOR, METAL GLAZEDI
RESISTOR, FIXED CAPBON
RESISTOR, FIXED CAPBON
RESISTOR, FIXED CAPBON
RESISTOR, FIXED CAPBON
RESISTOR, FIXED CAPBON | IO OLALIZO W EV 2012 DZTD | SMART, ROHM | RI54-I56 | | 5 | 40 | 00 H000CE72 | DECICTOR METAL CLASERY | 100 OIM 1/0 W EV 2012 D/TD | | | | 1 7 | 40 | 0RJI000E672
0RJ2200E672 | DECICTOR FIVER CARROLL | 100 OTM 1/0 W 5% 2012 TV 1F | SMART, ROHM | NI30,130,140,132,133 | | 1 | | URJZZUJEB/Z | PESISTUR, FIXED CARBON | ZZU URM 1/8 W 3/4 ZUIZ RV IP | SWART POIN | RI06 | | 2 | 42 | 0RJI00IE672 | INESISTOR FIXED CAMBON | IK UHM 1/8 W 5% ZUIZ H/ IP | | | | 10 | 43 | 0RJ200IE672
0RJ470IE672 | HESISTUR, FIXED CAMBON | 2X UHM 1/8 W 5% 2012 H/ IP | SMART, HUHM | RIOI,114-119,133,134,147
RIO3,104,120-127,149-151 | | 13 | | 0RJ470IE672 | HESISTOR, FIXED CAMBON | 4.7K OHM 1/8 W 5% 2012 R/1P | SMART, HUHM | RI03,104,120-127,149-151 | | | 45 | 0RJI004E672
0RJI200H680 | RESISTOR, FIXED CARBON
RESISTOR, METAL GLAZED(| IM OHM 1/8 W 5% 2012 R/TP | SMART, ROHM | RI05
RI32,146 | | 2 | 46 | | | | | | | 3 | | UNDIZUUNUUU | INCOIDIUM, METAL GLAZEDI | 120 Orm 1 / 2 11 3023 3:00% DD | SMART, ROHM | NI32,140 | | 3 | 47 | OR. JIBOOH680 | RESISTOR, METAL GLAZEDI | 180 OHM I / 2 W 5025 5,00% D | SMART, ROHM | RI28, I29, I3I | | 7 | 48 | 0RJI800H580
0RJ2400H680 | RESISTOR, METAL GLAZED(RESISTOR, METAL GLAZED(RESISTOR, METAL GLAZED(| 180 OHM / 2 W 5025 5.00% D
 240 OHM / 2 W 5025 5.00% D | SMART, ROHM | RI30,144,145 | | | 48
49 | OR. JIBOOH680 | RESISTOR, METAL GLAZED(RESISTOR, METAL GLAZED(RESISTOR, METAL GLAZED(RESISTOR, METAL GLAZED(| 180 OHN 1 / 2 W 5025 5,00% D
240 OHN 1 / 2 W 5025 5,00% D
510 OHN 1 / 2 W 5025 5,00% D | SMART, ROHM
SMART, ROHM
SMART, ROHM | RI28, I29, I31
RI30, I44, I45
I37-I43 | | | 48
49
50 | 0RJI800H580
0RJ2400H680 | RESISTOR, METAL GLAZED(RESISTOR, METAL GLAZED(RESISTOR, METAL GLAZED(RESISTOR, METAL GLAZED(| | SMART, ROHM | RI30,144,145 | | \blacksquare | 48
49
50 | 0RJI800H680
0RJ2400H680
0RJ51003680 | | | SMART, ROHM SMART, ROHM | RI28, I29, I31
RI30, 144, 145
I37-143 | | 9 | 48
49
50
51
52 | 0RJI800H680
0RJ2400H680
0RJ51003680 | | | SMART, ROHM
SMART, ROHM
SMART, ROHM | RIZ5, [25, [3]
RI30, [44, [45]
I37-143 | | 9 | 48
49
50 | 0RJI800H680
0RJ2400H680
0RJ51003680 | DIODE, SWITCHING | | SMART, ROHM
SMART, ROHM
SMART, ROHM | RIZ5, [25, [3]
RI30, [44, [45]
I37-143 | | | 48
49
50
51
52 | 0RJI800H680
0RJ2400H680
0RJ5I003680
0DSRM00068A
6600R000008 | DIODE, SWITCHING | RLS4148 ROHM R/TP LLDS(LL-34) 75V 45
JPTI212B JEIL 12VDC 50MA | SMART, ROHM SMART, ROHM SMART, ROHM ROHM NAMAE NAMAE | RIZ5, [25, [3]
RI30, [44, [45]
I37-143 | | 9 | 48
49
50
51
52
53
54 | 0RJIB00H680
0RJZ400H690
0RJ5I003680
0DSFM00068A
6600R000008
6600R000008
0DZFM00IB8A | DIODE, SWITCHING SWITCH, TACT SWITCH, TACT DIODE, ZENERS | RLS4148 ROHM R/TP LLDS(LL-34) 75V 45
JPTI212B JEIL 12VDC 50MA | SMART, ROHM SMART, ROHM SMART, ROHM ROHM NAMAE NAMAE DELTA, ROHM | NIZS, LEA, 13
130-,144, 145
137-143
DIG-121
SWI01-103, 105-109
ZDI01 | | 9 | 48
49
50
51
52
53
54
55 | 0RJI800H680
0RJ2400H680
0RJ5I003680
0DSRM00068A
6600R000008 | DIODE, SWITCHING
SWITCH, TACT
SWITCH, TACT | RLS4148 ROHM R/TP LLDS(LL-34) 75V 45
JPTI2128 JEIL 12VDC 50MA
JPTI2128 JEIL 12VDC 50MA | SMART, ROHM
SMART, ROHM
SMART, ROHM | N(26,124,131
1330,144,145
137-143
DII3-121
SWIO1-103
SWIO1-103,105-109 | | 9 | 49
50
51
51
51
51
51
51
51
51
51
51
51
51
51 | 0RJIB00H680
0RJZ400H690
0RJ5I003680
0DSFM00068A
6600R000008
6600R000008
0DZFM00IB8A | DIODE, SWITCHING SWITCH, TACT SWITCH, TACT DIODE, ZENERS | RLS4148 ROHM R/TP LLDS(LL-34) 75V 45
JPTI212B JEIL 12VDC 50MA | SMART, ROHM SMART, ROHM SMART, ROHM ROHM NAMAE NAMAE DELTA, ROHM | NIZS, LEA, 13
130-,144, 145
137-143
DIG-121
SWI01-103, 105-109
ZDI01 | | 9
I
I2 | 48
49
50
51
52
53
54
56
56 | ORLIBOOHERO ORLEADOHERO ORLEADOHERO ORLEADOHERO ODSTAMODOERA 6600R00000B 6600R00000B 00274M0018BA ODSTAMODOERA | DIODE, SWITCHING SWITCH, TACT SWITCH, TACT DIODE, SEPER DIODE, PECTIFIERS | R.SAI468 ROHN R/TP LLDSILL-341 75V 45 PPIZZB JELL IZOC SOMA PPIZZB JELL IZOC SOMA R.Z. ROHN R/TP LLDSILL-341 SOOMN 5,6V ZOMA ,PF R.RACOON ROHN R/TP SOTZ3 400V IA ZOA ,SEC IOMA | SWATI, FOOM SWART, ROHM SWART, ROHM ROHM ROHM ROHM ROHM DELTA, ROHM DELTA, GENERAL | HL25, L25, L31 R13, 144, 145 I37-143 DII3-121 SMI0-103 SMI0-103 SMI0-103, 105-109 ZDI01 DI01-112 | | 9 1 12 34 | 48
49
50
51
52
53
54
55
56
57 | ORLIBOOHERO ORLEADOHERO ORLEADOHERO ORLEADOHERO ODSTAMODOERA 6600R00000B 6600R00000B 00274M0018BA ODSTAMODOERA | DIODE, SWITCHING SWITCH, TACT SWITCH, TACT DIODE, ZENEFS DIODE, RECTIFIERS | R.SAI468 ROHN R/TP LLDSILL-341 75V 45 PPIZZB JELL IZOC SOMA PPIZZB JELL IZOC SOMA R.Z. ROHN R/TP LLDSILL-341 SOOMN 5,6V ZOMA ,PF R.RACOON ROHN R/TP SOTZ3 400V IA ZOA ,SEC IOMA | SWATT, HOPM SWART, ROHM SWART, ROHM ROHM ROHM ROHM DELTA, ROHM DELTA, GENERAL HARVATEK | H(26,124,13] R(30,144,145) (37-143) (101-12) (101-12) (101-12) (101-12) (101-12) (101-12) | | 9

 2

 34
 28 | 48
49
50
51
52
53
54
55
55
57
58 | ORLIBOOHERO ORLEADOHERO ORLEADOHERO ORLEADOHERO ODSTAMODOERA 6600R00000B 6600R00000B 00274M0018BA ODSTAMODOERA | DIOCE, SWITCHING SWITCH, TACT SWITCH, TACT SWITCH, TACT DIOCE, ZENERS DIOCE, FECTIFIERS LED LED | R.SAI468 ROHN R/TP LLDSILL-341 75V 45 PPIZZB JELL IZOC SOMA PPIZZB JELL IZOC SOMA R.Z. ROHN R/TP LLDSILL-341 SOOMN 5,6V ZOMA ,PF R.RACOON ROHN R/TP SOTZ3 400V IA ZOA ,SEC IOMA | SUARTI, FLORM SUARTI, FLORM ROHM ROHM ROHM ROHM ROHM ROHM DELTA, GENERAL HARVATEK HARVATEK | H(26,124,13] R(30,144,145) (37-143) (101-12) (101-12) (101-12) (101-12) (101-12) (101-12) | | 9

 2

 34
 28 | 48
49
50
51
52
53
54
55
55
57
58 | ORLIBOOHERO ORLEADOHERO ORLEADOHERO ORLEADOHERO ODSTAMODOERA 6600R00000B 6600R00000B 00274M0018BA ODSTAMODOERA | DICCE, SWITCHING SWITCH, TACT SWITCH, TACT DICCE, TSDERS DICCE, TSDERS DICCE, TSDERS LED LED LED LED | R.SAI468 ROHN R/TP LLDSILL-341 75V 45 PPIZZB JELL IZOC SOMA PPIZZB JELL IZOC SOMA R.Z. ROHN R/TP LLDSILL-341 SOOMN 5,6V ZOMA ,PF R.RACOON ROHN R/TP SOTZ3 400V IA ZOA ,SEC IOMA | SWATI, HOPM SWART, ROHM SWART, ROHM ROHM ROHM ROHM ROHM DELTA, ROHM DELTA, GENERAL HARVATEK HARVATEK EVERLIGHT | H(26,124,13] H(26,134,145 137-143 1013-121 1013-121 1010-125
1010-125 | | 9 1 12 34 | 48
49
50
51
52
53
54
55
55
57
58 | OR_BIGO1-680 OR_2400-1690 OR_51003690 OR_51003690 OSSN00068A 66007000008 66007000008 0007N000168A ODHM00028A ODLE0038AA ODLE0038AA ODLE0008AA ODLE0006AA | DICCE, SWITCHING SWITCH, TACT SWITCH, TACT DICCE, ZENERS DICCE, MECTIFIERS LED LED LED LED LED LED LED LED | R.SAI48 ROWN R/TP LLDSILL: 341 75V 45 _PTI228 JEL L2VIC 500A _PTI228 JEL L2VIC 500A R.Z. ROWN R/TP LLDSILL: 341 500M 5,6V 200A _FF RR4004 ROWN R/TP SUT23 400V IA 20A _SEC IOMA LDDTECH ELECTRONICS LTRESS: 4-191 R/TP AMBER LDDTECH ELECTRONICS LTRESS: 4-191 R/TP AMBER 19-129/GGC-ANIPSZI-9TIN JN, R ROWN 19-129/GGC-ANIPSZI-9TIN JN, R ROWN | SMPT, FORM SMPT, FORM SMPT, FORM FORM FORM FORM FORM FORM FORM FORM | H(25,125,13] R(33,144,145 137-143 D(13-12) SM(0-103 SM(0-103,105-109 ZD(0) D(0-112 D(25-142,147-163 D(201-228 D(0)-125,143,145 D(0)-143,145 | | 9
1
12
34
28
27 | 49
50
51
51
51
51
51
51
51
51
51
51
51
51
51 | OR_BIO01680 OR_25003680 OR_51003680 OSSN00068A 6600700008 6600700008 OSSN00068A OUSN0008A OUSN0008A OUSN0008A OUSN0008A OUSN0008A OUSN0008A OUSN0008A OUSN008A | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, ZENERS DIOCE, TECHT FIERS LED | R.S4146 ROM R/TP LLDSILL -341 757 45 JPTIZZB JEL LZDC 50M R.Z ROM R/TP LLDSILL -341 500W 5,67 20M R.Z ROM R/TP LLDSILL -341 500W 5,67 20M R.Z ROM R/TP LLDSILL -341 500W 12 20, SEC 10M LEDTECH BLECTRONICS LTBB22-LP-10T R/TP AMER LEDTECH BLECTRONICS LTBB22-LP-10T R/TP AMER LEDTECH BLECTRONICS LTBB22-LP-10T R/TP AMER 19-213/65C-AWIR22/STIN, IZ ROKK | SARYT, FORM SARYT, FORM SARYT, FORM SARYT, FORM ECHA WANE WANE WANE WANE WANE WANE WANE WAN | H(25,125,13] H(25,137) H(37) H | | 9

 2

 34
 28 | 48
49
50
51
52
53
54
55
55
57
58 | OF, ISO01-680 OF, 25(00)-680 OF, 5(00)-680 O | DIODE, SWITCHING SWITCH, TACT SWITCH, TACT DIODE, JASHES DIODE, JESSES LED | R.SAI48 ROWN R/TP LLDSILL '341 75V 45 PPT/283 JEL L2/XC '50AA PPT/283 JEL L2/XC '50AA R.Z. ROWN R/TP LLDSILL '341 500MF 5,6V 20AA , FF R.RAGOA ROWN R/TP SOTZ3 400V IA 20A , SEC 10MA LEDTECH BLECTRONISS LTRESZ-UR-191T R/TP AMEER 19-213/66C-ANIPSZ-9T INI, IZE ROWN INIPSZ-9T IN | SMERT, ICPUM SMERT, ICPUM SMERT, ICPUM SMERT, ICPUM SMERT, ICPUM I | H(26), (25), (3) (13), (44), (45) (37)-(45 | | 9
1
12
34
28
27 | 49
50
51
51
51
51
51
51
51
51
51
51
51
51
51 | OR.18004680 OR.24004680 OR.51003680 OR.51003680 OSFA000684 65007000009 OOFA000000 OOFA000028A OOLE00398A OOLE00398A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A | DIODE, SMITO-ING SMITO-I, TACT SMITO-I, TACT DIODE, ZAPARS DIODE, FACTIFIES LED LED LED LED LED LED LED LED LED LE | R.SAI48 ROHN R/TP LLDSILL -341 75V 45 PFIZZB JELL (2002 50AA PFIZZB JELL (2002 50AA R.Z. ROHN R/TP LLDSILL -341 500MF 5,6V 20AA , PF R.RAGOA ROHN R/TP SDIZZ 400V IA 20A , SEC IOMA LEDIECH SLECTRONICS L TREEZ-UR-STI R/TP AMEER LEDIECH SLECTRONICS L TREEZ-UR-STI R/TP AMEER 15-21-36CG -AWRZD-31TIN, IZ RAVN LEDIECH SLECTRONICS L TREEZ-UR-STI R/TP AMEER 15-21-36CG -AWRZD-31TIN, IZ RAVN LEDIECH SLECTRONICS L TREEZ-UR-STI R/TP SLEC | SAMPT, FORM SAMPT, FORM SAMPT, FORM SAMPT, FORM EARL EARL EARL EARL EARL EARL EARL EARL | H(25,125,13] R(33,144,145 137-143 D(13-12) SM(0-103 SM(0-103,105-109 ZD(0) D(0-112 D(25-142,147-163 D(201-228 D(0)-125,143,145 D(0)-143,145 | | 9
1
12
34
28
27 | 49
49
50
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6 | GR.1800-680 GR.2400-680 GR.25003690 GR.5003690 GR.50036 | DIOCE, SWITCHING SWITCH, TACT SWITCH, TACT DIOCE, ZENERS DOOG, JECTIFIERS LED | R.S.448 ROM R/TP LIDSILL '341 75V 45 PPT/283 JEL LEVIC '500A PPT/283 JEL LEVIC '500A R.Z. ROM R/TP LIDSILL '341 500M 5,6V 200A , PF R.R400A ROM R/TP SOT23 400V IA 20A , SEC 10MA LEDTECH ELECTRONIS L'TRES2-UR-191T R/TP AMER LEDTECH ELECTRONIS L'TRES2-UR-191T R/TP AMER 19-213/66C-ANIPS2/51TNI, NZ Rork1 19-213/66C-ANIPSZ/51TNI, | SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM ECTA, FORM DEL TA, | H(26,124,13] R(30,144,145) (37-143) (37 | | 9
1
12
34
28
27 | 49 69 55 161 67 67 67 67 67 67 67 67 67 67 67 67 67 | GR.1800-680 GR.2400-680 GR.25003690 GR.5003690 GR.50036 | DIODE, SMITO-ING SMITO-I, TACT SMITO-I, TACT DIODE, ZAPARS DIODE, FACTIFIES LED LED LED LED LED LED LED LED LED LE | R.SAI48 ROWN R/TP LLDSILL '341 75V 45 PPT/283 JEL L2/XC '50AA PPT/283 JEL L2/XC '50AA R.Z. ROWN R/TP LLDSILL '341 500MF 5,6V 20AA , FF R.RAGOA ROWN R/TP SOTZ3 400V IA 20A , SEC 10MA LEDTECH
BLECTRONISS LTRESZ-UR-191T R/TP AMEER 19-213/66C-ANIPSZ-9T INI, IZE ROWN INIPSZ-9T IN | SAMPT, FORM SAMPT, FORM SAMPT, FORM SAMPT, FORM EARL EARL EARL EARL EARL EARL EARL EARL | H(26), (25), (3) (13), (44), (45) (37)-(45 | | 9
1
12
34
28
27 | 49
49
50
5
5
12
13
13
14
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | OR.18004680 OR.24004680 OR.51003680 OR.51003680 OSFA000684 65007000009 OOFA000000 OOFA000028A OOLE00398A OOLE00398A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A OOLE0008A | DIOCE, SWITCHING SWITCH, TACT SWITCH, TACT DIOCE, ZENERS DOOG, JECTIFIERS LED | R.S.448 ROM R/TP LIDSILL '341 75V 45 PPT/283 JEL LEVIC '500A PPT/283 JEL LEVIC '500A R.Z. ROM R/TP LIDSILL '341 500M 5,6V 200A , PF R.R400A ROM R/TP SOT23 400V IA 20A , SEC 10MA LEDTECH ELECTRONIS L'TRES2-UR-191T R/TP AMER LEDTECH ELECTRONIS L'TRES2-UR-191T R/TP AMER 19-213/66C-ANIPS2/51TNI, NZ Rork1 19-213/66C-ANIPSZ/51TNI, | SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM ECTA, FORM DEL TA, | H(26,124,13] R(30,144,145) (37-143) (37 | | 9
1
12
34
28
27 | 49
50
51
12
13
13
14
15
15
15
15
15
15
15
15
15
15
15
15
15 | QCLEDO/680 QCL500/680 QCL500/680 QCL500/680 QCL500/680 QCL500/680 QCFM00008 QCFM00008 QCFM00080 QCFM008080 QCFM00808080 QCFM008080 QCFM00808080 QCFM008080 QCFM008080 QCFM008080 QCFM008080 QCFM008080 QCFM008080 QCFM008080 QCFM00808 | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, ZEPERS DIOCE, RECTIFIERS LED | R.SAI48 ROWN R/TP LLDSILL 341 75V 45 PTIZZB JELL (ZNC 50MA PTIZZB JELL (ZNC 50MA R.Z. ROWN R/TP LLDSILL 341 500MF 5,6V 20MA ,PF R.ROOM ROWN R/TP SDIZZ 400V IA 20A ,SEC 10MA LEDTECH ELECTRONICS L TREEZ-UR-191T R/TP AMEER LEDTECH BLECTRONICS L TREEZ-UR-191T R/TP AMEER 19-12-960C AWRZD-31T IN, IZ ROWN 19-1 | SWATT, FORM SWATT, FORM SWATT, FORM SWATT, FORM FORM FORM FORM FORM FORM FORM FORM | H(26,124,13] R(30,144,145) (37-143) (37 | | 9
1
12
34
28
27 | 49
50
51
51
51
51
51
51
51
51
51
51
51
51
51 | GUIDO/GRO GUZ-GOOGEO GUZ-GOOGEO GUZ-GOOGEO GUZ-GOOGEO GUZ-GOOGEO GUZ-GOOGEO GOOGEO GOOGEO GOOGEO GOOGEO GOOGEO GOOGEO GUZ-GOOGEO GOOGEO GOOCE GOOGEO | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, ZEPERS DIOCE, RECTIFIERS LED | R.S4148 ROM R/TP LLDSILL -341 75V 45 PTIZZB JEL LEVIC 50MA PTIZZB JEL LEVIC 50MA R.Z ROM R/TP LLDSILL -341 500M 5,6V 20MA , FF R.Z ROM R/TP LLDSILL -341 500M 1,6 20 3,500 00M R.Z ROM R/TP LLDSILL -341 500M 1,6 20 3,500 00M LEDIECH BLECTRONICS LTBESZ-UR-BIT R/TP AMBER LEDIECH BLECTRONICS LTBESZ-UR-BIT R/TP AMBER 19-213/65C-AMBZ9/JTIN, IX ROYAL 10-213/65C-AMBZ9/JTIN, 10-21 | SMYLL (FORM SWYLL (FORM) | H(26,124,13] R(30,144,145) (37-143)
(37-143) (37 | | 9
1
12
28
27
2
1 | 49
50
51
51
51
51
51
51
51
51
51
51
51
51
51 | QCLEDO/680 QCL500/680 QCL500/680 QCL500/680 QCL500/680 QCL500/680 QCFM00008 QCFM00008 QCFM00080 QCFM008080 QCFM00808080 QCFM008080 QCFM00808080 QCFM008080 QCFM008080 QCFM008080 QCFM008080 QCFM008080 QCFM008080 QCFM008080 QCFM00808 | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, ZEPERS DIOCE, RECTIFIERS LED | R.S4148 ROM R/TP LLDSILL -341 75V 45 PTIZZB JEL LEVIC 50MA PTIZZB JEL LEVIC 50MA R.Z ROM R/TP LLDSILL -341 500M 5,6V 20MA , FF R.Z ROM R/TP LLDSILL -341 500M 1,6 20 3,500 00M R.Z ROM R/TP LLDSILL -341 500M 1,6 20 3,500 00M LEDIECH BLECTRONICS LTBESZ-UR-BIT R/TP AMBER LEDIECH BLECTRONICS LTBESZ-UR-BIT R/TP AMBER 19-213/65C-AMBZ9/JTIN, IX ROYAL 10-213/65C-AMBZ9/JTIN, 10-21 | SMYLL (FORM SWYLL (FORM) | H(26,124,13] R(30,144,145) (37-143) (37 | | 9
1
12
34
28
27
2
1 | 49
50
51
51
51
51
51
51
51
51
51
51
51
51
51 | GUIDO/GRO GUZ-GOOGEO GUZ-GOOGEO GUZ-GOOGEO GUZ-GOOGEO GUZ-GOOGEO GUZ-GOOGEO GOOGEO GOOGEO GOOGEO GOOGEO GOOGEO GOOGEO GUZ-GOOGEO GOOGEO GOOCE GOOGEO | DIOCE, SWITCHING SWITCH, TACT SWITCH, TACT DIOCE, ZENERS DOOG, JECTIFIERS LED | R.SAI48 ROWN R/TP LLDSILL-341 75V 45 PTIZZB JEIL (2002 SOMA PTIZZB JEIL (2002 SOMA R.Z. ROWN R/TP LLDSILL-341 500M 5,6V 20MA .PF R.Z. ROWN R/TP LLDSILL-341 500M 5,6V 20MA .PF R.Z. ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA LEDIECH ELECTRONICS LTERCE-UR-19TT R/TP AMBER LEDIECH ELECTRONICS LTERCE-UR-19TT R/TP AMBER LEDIECH BESTRONICS LTERCE-UR-19TT R/TP RED GEZ-200F DIE YOUNG PIEZO 444/RZ 900810-MN1 R. SENSOR JAMES-TEC OMB PDS SR-341 PER FREE, LENI-48 LENI-48 M 1878 R PREE LESSON LENI-08NM 19NM 19N 90.000-0.5002 | SMYLL (FORM SWYLL (FORM) | H(26,124,13] R(30,144,145) (37-143) (37 | | 9
1
12
34
28
27
2
1 | 49
55
57
57
58
58
57
58
58
58
57
58
58
58
58
58
58
58
58
58
58
58
58
58 | GUIDO-680 GUIDO- | DIOCE, SHITCHING SHITCH, TACT S | R.SAI4B ROWN R/TP LLDSILL-341 75V 45 PTIZZB JELL (ZNC SOMA PTIZZB JELL (ZNC SOMA R.Z. ROWN R/TP LLDSILL-341 500MI 5,6V 20MA ,PF R.ROOM ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA R.Z. ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER 19-21/366C-AMPZ/31T INI, NC ROWN 19-21/36C-AMPZ/31T IN | SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM EDITA, | Htds.12-3,131 R130,144,145 I37-143 I013-12 I013-12 I013-12 I013-12 I013-12 I013-12 I013-12 I013-12 I013-13 I01 | | 9
 | 48 49 55 51 181 185 185 185 185 185 185 185 1 | GR.1800-680 GR.2400-680 GR.2400 GR | DIOCE, SHITCHING SHITCH, TACT SHITCH, TACT DIOCE, ZEPERS DIOCE, RECTIFIES LED LED LED LED BJZZER, PIEZO CEPANIC BJZZER, PIEZO CEPANIC SPESOR, PIEZO CEPANIC SPESOR, PIEZO CEPANIC SPESOR, PIEZO CEPANIC SPESOR, PIEZO CEPANIC | R.SAI4B ROWN R/TP LLDSILL-341 75V 45 PTIZZB JELL (ZNC SOMA PTIZZB JELL (ZNC SOMA R.Z. ROWN R/TP LLDSILL-341 500MI 5,6V 20MA ,PF R.ROOM ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA R.Z. ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER 19-21/366C-AMPZ/31T INI, NC ROWN 19-21/36C-AMPZ/31T IN | SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM EDITA, | H(26,124,13] R(30,144,145) (37-143)
(37-143) (37 | | 9
 | 48
49
55
51
51
53
54
55
55
55
55
56
57
58
58
58
58
58
58
58
58
58
58
58
58
58 | GR.1800-680 GR.2600-680 GR.2600-6800 GR.2600 GR. | DIODE, SMITCHING SMITCH, TACT SMITCH, TACT SMITCH, TACT DIODE, TACT DIODE, TACT LED LED LED LED LED LED LED LED LED SUZZEH, PIEZO CEPANIC BUZZEH, PIEZO CEPANIC SUZZEH, SUZERI, CE | R.SAI4B ROWN R/TP LLDSILL-341 75V 45 PTIZZB JELL (ZNC SOMA PTIZZB JELL (ZNC SOMA R.Z. ROWN R/TP LLDSILL-341 500MI 5,6V 20MA ,PF R.ROOM ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA R.Z. ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER 19-21/366C-AMPZ/31T INI, NC ROWN 19-21/36C-AMPZ/31T IN | SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM EDITA, | H(36,124,13] R(30,144,145) (37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) D(3-1 | | 9
 | 48 49 55 51 181 185 185 185 185 185 185 185 1 | GR.1800-680 GR.2600-680 GR.2600-6800 GR.2600 GR. | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, ZEPERS DIOCE, RECTIFIES LED | R.SAI4B ROWN R/TP LLDSILL-341 75V 45 PTIZZB JELL (ZNC SOMA PTIZZB JELL (ZNC SOMA R.Z. ROWN R/TP LLDSILL-341 500MI 5,6V 20MA ,PF R.ROOM ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA R.Z. ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER 19-21/366C-AMPZ/31T INI, NC ROWN 19-21/36C-AMPZ/31T IN | SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM EDITA, | H(36,124,13] R(30,144,145) (37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) D(3-1 | | 9
 | 48
49
55
51
51
53
54
55
55
55
55
56
57
58
58
58
58
58
58
58
58
58
58
58
58
58 | GR.1800-680 GR.200-680 | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, JAPANES DIOCE, JAPANES LED | R.SAI4B ROWN R/TP LLDSILL-341 75V 45 PTIZZB JELL (ZNC SOMA PTIZZB JELL (ZNC SOMA R.Z. ROWN R/TP LLDSILL-341 500MI 5,6V 20MA ,PF R.ROOM ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA R.Z. ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER 19-21/366C-AMPZ/31T INI, NC ROWN 19-21/36C-AMPZ/31T IN | SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM EDITA, | H(36,124,13] R(30,144,145) (37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) D(3-1 | | 9
 | 48
49
55
51
51
53
54
55
55
55
55
56
57
58
58
58
58
58
58
58
58
58
58
58
58
58 | GR.1800-680 GR.2400-680 GR.2400 GR | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, ZEPERS DIOCE, RECTIFIERS LED | R.SAI4B ROWN R/TP LLDSILL-341 75V 45 PTIZZB JELL (ZNC SOMA PTIZZB JELL (ZNC SOMA R.Z. ROWN R/TP LLDSILL-341 500MI 5,6V 20MA ,PF R.ROOM ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA R.Z. ROWN R/TP SDIZZ 400V IA 20A ,SEC IOMA LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER LEDTECH ELECTRONICS LTREEZ-LR-19TT R/TP AMEER 19-21/366C-AMPZ/31T INI, NC ROWN 19-21/36C-AMPZ/31T IN | SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM SMERT, FORM EDITA, | H(36,124,13] R(30,144,145) (37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) D(3-1 | | 9
 12
 34
 23
 27
 1
 0.2g
 0.5g | 48 49 50 51 52 53 54 55 56 57 58 60 60 60 60 60 60 60 60 60 60 60 60 60 | GR.1800-6800 GR.2600-6800 GR.2600 GR.26 | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, CAPARIS DIOCE, LECETH FIRS LED LED LED LED LED LED LED LED LED LE | R.S4146 ROM R/TP LLDSILL -341 757 45 JPTIZZB JEL LZNC 50AA JPTIZZB JEL LZNC 50AA JPTIZZB JEL LZNC 50AA R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF LEDIEOH B ECTRONICS LTBEZZ-IAP-BIT R/TP AMEER LEDIEOH B ECTRONICS LTBEZZ-IAP-BIT R/TP AMEER 19-23-056 - AMIPZZ-JTIN, NZ R-TR-I 10-23-056 - AMIPZZ-JTIN, NZ R-TR-I 10-24-056 - AMIPZZ-JTIN, NZ R-TR-I 10-256 10-257 - AMIPZZ-JTIN, NZ R-TR-I 10-257 - AMIPZZ-JTIN, NZ | SMYLI, ROM | H(26,129,13] R(26,13) R(2 | | 9
 | 48
49
55
51
51
53
54
55
55
55
55
56
57
58
58
58
58
58
58
58
58
58
58
58
58
58 | GR.1800-680 GR.2400-680 GR.2400 GR | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, CAPARIS DIOCE, LECETH FIRS LED LED LED LED LED LED LED LED LED LE | R.S4146 ROM R/TP LLDSILL -341 757 45 JPTIZZB JEL LZNC 50AA JPTIZZB JEL LZNC 50AA JPTIZZB JEL LZNC 50AA R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF LEDIEOH B ECTRONICS LTBEZZ-IAP-BIT R/TP AMEER LEDIEOH B ECTRONICS LTBEZZ-IAP-BIT R/TP AMEER 19-23-056 - AMIPZZ-JTIN, NZ R-TR-I 10-23-056 - AMIPZZ-JTIN, NZ R-TR-I 10-24-056 - AMIPZZ-JTIN, NZ R-TR-I 10-256 10-257 - AMIPZZ-JTIN, NZ R-TR-I 10-257 - AMIPZZ-JTIN, NZ | SMERT, IROM SMERT, IROM SMERT, IROM SMERT, IROM SMERT, IROM EDITA, ROM | H(36,124,13] R(30,144,145) (37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) S(37)-143 D(3-12) D(3-1 | | 9
 12
 34
 23
 27
 1
 0.2g
 0.5g | 48 49 50 51 52 53 54 55 55 57 58 60 66 67 68 68 69 100 101 102 103 | GR.1800-6800 GR.2600-6800 GR.2600 GR.26 | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, ZEPERS DIOCE, RECTIFIERS LED | R.S4146 ROM R/TP LLDSILL -341 757 45 JPTIZZB JEL LZNC 50AA JPTIZZB JEL LZNC 50AA JPTIZZB JEL LZNC 50AA R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF R.Z ROM R/TP LLDSILL -341 500M 5,67 20AA , FF LEDIEOH B ECTRONICS LTBEZZ-IAP-BIT R/TP AMEER LEDIEOH B ECTRONICS LTBEZZ-IAP-BIT R/TP AMEER 19-23-056 - AMIPZZ-JTIN, NZ R-TR-I 10-23-056 - AMIPZZ-JTIN, NZ R-TR-I 10-24-056 - AMIPZZ-JTIN, NZ R-TR-I 10-256 10-257 - AMIPZZ-JTIN, NZ R-TR-I 10-257 - AMIPZZ-JTIN, NZ | SMYLI, ROM | H(26,129,13] R(26,13) R(2 | | 9
 | 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50 | GR.1800-680 GR.2400-680 GR.2400 GR | DIOCE, SMITCHING SMITCH, TACIT | R.SAI4B ROM RYTP LLDSILL-341 75V 45 PTIZZB JEL LEVIC SOMA PTIZZB JEL LEVIC SOMA PTIZZB JEL LEVIC SOMA R.Z ROM RYTP LLDSILL-341 500M 5,6V 20MA, PF R.Z ROM RYTP LLDSILL-341 500M 1,6 20 3,500 00M R.Z ROM RYTP LLDSILL-340 1,100 1,200 3,500 00M LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP AMBER REMON ROM RYTP SIZZ 340 M 1,200 1,500 00M LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP AMBER REJEGGE-240 257 (11), NZ ROYAL LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP RED BEZ-236 00M LEDTECH BEZ-TRONICS BEZ-BIT RYTP RYTP RYTP RYTP RYTP RYTP BEZ-236 00M LEDTECH BEZ-BIT RYTP RYTP RYTP RYTP RYTP BEZ-236 00M LEDTECH BEZ-BIT LED | SMAPT, FORM SMAPT, FORM SMAPT, FORM SMAPT, FORM SMAPT, FORM SMAPE FORM FORM FORM FORM FORM FORM FORM FORM | Httds:1/2-1,13 Httds:1/2- | | 9
 | 848 499 50 50 50 50 50 50 50 50 50 50 50 50 50 | GR.1800-680 GR.2400-680 GR.2400 GR | DIOCE, SMITCHING SMITCH, TACIT | R.SAI4B ROM RYTP LLDSILL-341 75V 45 PTIZZB JEL LEVIC SOMA PTIZZB JEL LEVIC SOMA PTIZZB JEL LEVIC SOMA R.Z ROM RYTP LLDSILL-341 500M 5,6V 20MA, PF R.Z ROM RYTP LLDSILL-341 500M 1,6 20 3,500 00M R.Z ROM RYTP LLDSILL-340 1,100 1,200 3,500 00M LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP AMBER REMON ROM RYTP SIZZ 340 M 1,200 1,500 00M LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP AMBER REJEGGE-240 257 (11), NZ ROYAL LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP RED BEZ-236 00M LEDTECH BEZ-TRONICS BEZ-BIT RYTP RYTP RYTP RYTP RYTP RYTP BEZ-236 00M LEDTECH BEZ-BIT RYTP RYTP RYTP RYTP RYTP BEZ-236 00M LEDTECH BEZ-BIT LED | SMAPT, FORM SMAPT, FORM SMAPT, FORM SMAPT, FORM SMAPT, FORM SMAPE INAME EDLTA, GONEDAL HAPVATEK HAPVATEK HAPVATEK HAPVATEK HAPVATEK HAPVATEK HAPVATEK EVERLIGHT EVERLIGHT EVERLIGHT EVERLIGHT HAPVATEK HAPVATEK DOE YOUNG JAMES TECH IESSING I | H(26,124,13] R130,144,145 (37)-143 1013-123
1013-123 | | 9
1
12
34
28
27
1
1
0.29
0.59 | 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50 | GR.1800-680 GR.2400-680 GR.2400 GR.240 | DIOCE, SMITCHING SMITCH, TACIT | R.SAI4B ROM RYTP LLDSILL-341 75V 45 PTIZZB JEL LEVIC SOMA PTIZZB JEL LEVIC SOMA PTIZZB JEL LEVIC SOMA R.Z ROM RYTP LLDSILL-341 500M 5,6V 20MA, PF R.Z ROM RYTP LLDSILL-341 500M 1,6 20 3,500 00M R.Z ROM RYTP LLDSILL-340 1,100 1,200 3,500 00M LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP AMBER REMON ROM RYTP SIZZ 340 M 1,200 1,500 00M LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP AMBER REJEGGE-240 257 (11), NZ ROYAL LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP RED BEZ-236 00M LEDTECH BEZ-TRONICS BEZ-BIT RYTP RYTP RYTP RYTP RYTP RYTP BEZ-236 00M LEDTECH BEZ-BIT RYTP RYTP RYTP RYTP RYTP BEZ-236 00M LEDTECH BEZ-BIT LED | SMYLL (FORM SWATT, FORM | H(26,129,13) H(26,129,13) H(26,13) H(27,143) H | | 9
 | 48 49 49 50 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52 | GR.1800-680 GR.2400-680 GR.2400 GR | DIOCE, SMITCHING SMITCH, TACT SMITCH, TACT DIOCE, CAPARIS DIOCE, LECETH FIRS LED LED LED LED LED LED LED LED LED LE | R.SAI4B ROM RYTP LLDSILL-341 75V 45 PTIZZB JEL LEVIC SOMA PTIZZB JEL LEVIC SOMA PTIZZB JEL LEVIC SOMA R.Z ROM RYTP LLDSILL-341 500M 5,6V 20MA, PF R.Z ROM RYTP LLDSILL-341 500M 1,6 20 3,500 00M R.Z ROM RYTP LLDSILL-340 1,100 1,200 3,500 00M LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP AMBER REMON ROM RYTP SIZZ 340 M 1,200 1,500 00M LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP AMBER REJEGGE-240 257 (11), NZ ROYAL LEDTECH ELECTRONICS LTRESZ-UR-BIT RYTP RED BEZ-236 00M LEDTECH BEZ-TRONICS BEZ-BIT RYTP RYTP RYTP RYTP RYTP RYTP BEZ-236 00M LEDTECH BEZ-BIT RYTP RYTP RYTP RYTP RYTP BEZ-236 00M LEDTECH BEZ-BIT LED | SMAPT, FORM SMAPT, FORM SMAPT, FORM SMAPT, FORM SMAPT, FORM SMAPE INAME EDLTA, GONEDAL HAPVATEK HAPVATEK HAPVATEK HAPVATEK HAPVATEK HAPVATEK HAPVATEK EVERLIGHT EVERLIGHT EVERLIGHT EVERLIGHT HAPVATEK HAPVATEK DOE YOUNG JAMES TECH IESSING I | H(26,124,13] R130,144,145 (37)-143 1013-123 | | 9
 | 848 499 50 50 50 50 50 50 50 50 50 50 50 50 50 | GR.1800-680 GR.2400-680 GR.2400 GR.240 | DIOCE, SMITCHING SMITCH, TACIT | R.SAI4B ROM RYTP LLDSILL-341 75V 45 PTIZZB JEL LEVICE SOMA PTIZZB JEL LEVICE SOMA R.Z. ROM RYTP LLDSILL-341 500M 5,6V 20MA PT R.Z. ROM RYTP LLDSILL-341 500M 1,6 20 20MA PT R.Z. ROM RYTP LLDSILL-341 500M 1,8 20M 5,6V 20MA PT REMOOR ROM RYTP SUIZS 400V 1,8 20M 5,6V 20MA PT REMOOR ROM RYTP SUIZS 400V 1,8 20M 5,6V 20MA PT REMOOR ROM RYTP SUIZS 400V 1,8 20M 5,6V 20M 6,7 10M 1,8 20M 1,8 20M 6,7 10M 1,8 20M 1,8 20M 6,7 10M 1,8 20M 1,8 20M 6,7 10M 1,8 20M 1, | SMYLL (FORM SWATT, FORM | H(26,129,13) H(26,129,13) H(26,13) H(27,143) H | | 9
 | 48 49 49 50 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52 | GR.1800-680 GR.2400-680 GR.2400 GR | DICCE, SMITCHING SMITCH, TACT SMITCH, TACT DICCE, ZEARTS DICCE, TECT FIELD LED LED LED LED LED LED BJZZER, PIEZO CEPANIC BJZZER, PIEZO CEPANIC BJZZER, PIEZO CEPANIC SPSSOR, TEMPERATURE SOLERI, SOLERING METAL CREAM PRISCIOR, FORD Nome PICKE N | R.SAI46 ROWN R/TP LLDSILL-341 75V 45 JPTIZZB JEIL LZNCC 50AA JPTIZZB JEIL LZNCC 50AA R.Z. ROWN R/TP LLDSILL-341 500M 5,6V 20AA , PF R.Z. ROWN R/TP LLDSILL-341 500M 5,6V 20AA , PF R.Z. ROWN R/TP SJTZ3 40V IA 22A , SEC 10MA LDTIED I BLECTRONICS LTBEZ-UR-BIT R/TP ABER D-23 405C ANNEZZ-JT IN, AC BCRK1 LDTIED I BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-203 BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-203 BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-204 BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-204 BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-205 BLECTRONICS LTBEZ-UR-BIT R/TP RED GENERAL BROWN SHOWN | SMYLL (FORM SWATT, FORM | Hab. 12-3, 13 | | 9
 | 48 49 49 50 51 51 52 53 54 55 56 66 66 66 66 66 66 66 66 66 66 66 | GR.1800-680 GR.2400-680 GR.2400 GR | DICCE, SMITCHING SMITCH, TACT SMITCH, TACT DICCE, ZEARTS DICCE, TECT FIELD LED LED LED LED LED LED BJZZER, PIEZO CEPANIC BJZZER, PIEZO CEPANIC BJZZER, PIEZO CEPANIC SPSSOR, TEMPERATURE SOLERI, SOLERING METAL CREAM PRISCIOR, FORD Nome PICKE N | R.SAI46 ROWN R/TP LLDSILL-341 75V 45 JPTIZZB JEIL LZNCC 50AA JPTIZZB JEIL LZNCC 50AA R.Z. ROWN R/TP LLDSILL-341 500M 5,6V 20AA , PF R.Z. ROWN R/TP LLDSILL-341 500M 5,6V 20AA , PF R.Z. ROWN R/TP SJTZ3 40V IA 22A , SEC 10MA LDTIED I BLECTRONICS LTBEZ-UR-BIT R/TP ABER D-23 405C ANNEZZ-JT IN, AC BCRK1 LDTIED I BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-203 BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-203 BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-204 BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-204 BLECTRONICS LTBEZ-UR-BIT R/TP RED BE-205 BLECTRONICS LTBEZ-UR-BIT R/TP RED GENERAL BROWN SHOWN | SMERT, IFOM SMERT, IFOM SMERT, IFOM SMERT, IFOM SMERT, IFOM SMERT, IFOM ECTA, COLOR | Httds: | | 9
 | 48 49 49 50 51 51 51 51 51 51 51 51 51 51 51 51 51 | GRUBO-660 GR.2004690 G | DIOCE, SMITCHING SMITCH, TACIT | R.SAI4B ROM R/TP LLDSILL -341 75V 45 PTIZZB JEL LEVICE SOMA PTIZZB JEL LEVICE SOMA R.Z. ROM R/TP LLDSILL -341 550M 5,6V 20MA .PF R.Z. ROM R/TP LLDSILL -341 550M 5,6V 20MA .PF R.Z. ROM R/TP LLDSILL -341 550M 1,2 ZB .SEC IOMA LEDIECH B.ECTRONICS LTBESZ-LR-BIT R/TP AMEER LEDIECH B.ECTRONICS LTBESZ-LR-BIT R/TP AMEER 19-23 456C-AMPZB/ST INI, NZ BORK 19-23 456C-AMPZB/ST INI, NZ BORK 19-23 456C-AMPZB/ST INI, NZ BORK LEDIECH B.ECTRONICS LTBESZ-LR-BIT R/TP RED 19-23 456C-AMPZB/ST INI, NZ BORK LEDIECH B.ECTRONICS LTBESZ-LR-BIT R/TP RED 19-23 46C-AMPZB/ST INI, NZ BORK LEDIECH B.ECTRONICS LTBESZ-LR-BIT R/TP RED 19-23 46C-AMPZB/ST INI, NZ BORK 19-23 46C-AMPZB/ST INI, NZ BORK 19-23 46C-AMPZB/ST INI, NZ BORK 19-24 BD FREE, LPH-49 10-45 BIRN TY BORK TYE LED MOOLE 10-5 RINN TY OBEST THE R-RIS JONE HILL -3 MB/ST INI 10-5 RINN TY OBEST THE R-RIS JONE HILL -3 MB/ST INI 10-5 RINN TY OBEST THE R-RIS JONE HILL -3 MB/ST INI 10-5 RINN TY OBEST THE R-RIS JONE HILL -3 MB/ST INI 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-5 RINN TY OBEST THE R-RIS JONE HILD R-BIRN TY 10-7 RIS R-BIRN THE TYPE LLDS LLDS TYPE R-RIS JONE HILD R-BIRN TYPE LLDS JONE HILD R-BIRN TYPE LLDS JONE TYPE R-RIS LLDS JONE TYPE R-R | SMAPT, IPOM SMAPT, IPOM SMAPT, IPOM SMAPT, IPOM SMAPT, IPOM SMAPT, IPOM SMAPT | #(163, 124, 13) #(133, 144, 145) #(137, 143, 144) #(137, 143, 144) #(137, 143, 145) #(137, 143, 145) #(137, 143, 145) #(137, 143, 144) #(137, 143, 144) #(137,
144) #(137, 144 | ### 5-5. PCB circuit diagram ### 5-5-1. PWB (PCB) assembly and main circuit diagram * PCB circuit diagram can slightly change according to the situation. ### 5-5-2. PWB (PCB) assembly and display circuit diagram (6871JB1462) - * The circuit diagram can slightly change according to the situation. - * This includes the PWB (PCB) assembly and sub circuit diagram. # Freezing cycle and refrigerant # Chapter 6. Freezing cycle and refrigerant ### 6-1. Freezing cycle (Freezing principle/Refrigerant gas circulation diagram) ### 6-1-1. Freezing principle Freezing is an operation of maintaining a lower temperature (generally 0°C) than the natural temperature (usually ambient temperature surrounding us). This requires an insulated space, refrigerant (R134a) to absorb the heat and the circulation circuit (compressor, condenser, evaporator etc.) to operate the phase change of the refrigerant. ### 6-1-2. Refrigerant gas circulation diagram - 1. Compressor - 2. Wire condenser - 2-1. Hot line pipe - 3. Drier - 4. 3-way valve - 5. Capillary tube (left) - 6. Capillary tube (right) - 7. Evaporator (left) - 8. Evaporator (right) - 9. Suction pipe - 10. Cooling fan # Freezing cycle and refrigerant ### 6-1-3. Operation description of each circulation circuit | No. | Parts name | Operation details | Refrigerant gas condition (input and output) | |-----|---------------------------|--|--| | 1 | Compressor | Compress the refrigerant from low pressure (0kg/cm²) to high pressure (8-12kg/cm²). | Low pressure gas>High pressure gas (0kg/cm²) (8~12kg/cm²) Temperature (30°C); (80~120°C) | | 2 | Condenser & hot line pipe | High pressure gas refrigerant exhausts heat and becomes liquid refrigerant. | High pressure gas>High pressure liquid (8~12kg/cm²) (8~12kg/cm²) Temperature (80~120°C); (40~60°C) | | 3 | Drier | There is an absorbent that absorbs the moisture within the circulation circuit. (Moisture absorption device) | | | 4 | Capillary tube | This is the long narrow pipe where high pressure refrigerant passes to reduce the pressure. | High pressure liquid>Low pressure liquid (8~12kg/cm²) (0kg/cm²) Temperature (40~60°C); (-27°C) | | 5 | Evaporator | Low pressure liquid refrigerant absorbs heat to change to low pressure gas refrigerant. | Low pressure liquid>Low pressure gas (0kg/cm²) (0kg/cm²) Temperature (-27°C) | | 6 | Suction pipe | This connects the evaporator and the compressor. | Low pressure gas>Low pressure gas (0kg/cm²) (8~12kg/cm²) Temperature (-27°C); (30°C) | ### Caution - ▶ Because the outlet of the capillary tube is where the high pressure refrigerant changes from high to low pressure, the low pressure refrigerant quickly diffuses to the evaporator, making flash sounds. (shik shik sound) - ▶ When the low pressure liquid refrigerant evaporates from the evaporator, it is done throughout the whole pipe from inlet to outlet, making a sound of liquid refrigerant flowing. This can happen depending on the load condition of the refrigerator and on the evaporation, but it is not a problem. ### 6-2. Refrigerant | Refrigerant | Characteristics | ODP | GWP | Remarks | |---------------------|--|-----|------|-------------| | R134a
(HFC-134a) | Because it does not include chloride, which cause ozone destruction, it will not destruct the ozone and has a low GWP compared to the existing R12 (GWP: 15300). | 0 | 1200 | Refrigerant | ^{*} ODP: Ozone Depleting Potential (Relative index with CFC11 as 1.0) GWP: Global Warming Potential (Relative index with CO2 as 1.0) # General details about the product ### Chapter 7. General details about the product ### 7-1. Refrigerator noise The structure of the freezing room and mechanical room, which are the sources of Kimchi refrigerator noise, is as follows. Here you can see that the main source of noise during refrigerator operation is the compressor, the condenser and the fan motor that cools the compressor in the mechanical room. (Fig. Diagram of Kimchi refrigerator noise source) ### 7-1-1. SVC method for noise claim ### (1) Basic method of noise reduction - **Block**: This method blocks the noise from the source so that it does not reach the ears by blocking the transmission path of the sound with high density sound blocker. (This is effective in high frequency area) - **Using sound absorber**: This method is similar to the blocking method but uses Styrofoam and glass wool in the transmission path to absorb the sound. (This is effective in low frequency area) - **Vibration reduction**: This method blocks the mechanical vibration from the operating part so that it does not reach other parts. (using vibration reduction rubber etc.) - Dynamic balance maintenance: This method minimizes the dynamic imbalance of the rotating object. - Fixing the vibrating part: This method firmly fixes the vibrating part depending on the situation. - Removing contact: Separate the two parts or firmly fix the object that periodically make sound by hitting each other. # General details about the product ### (2) Service method for major noise claim item for Kimchi refrigerator | Noise claim | Noise generation | Service method | Remarks | |--|---|---|---| | Noise from poor installation | ▶ The installation floor surface is not hard enough ▶ The refrigerator is not leveled | Reinforce the floor hardness Move the installation location Use the adjustment screw in front of the refrigerator to level the refrigerator | | | Parts vibration | ▶ "Wing" sound | Insert firmly all the parts of the
refrigerator in the right location | ► Mainly within the refrigerating compartment | | Compressor resonance sound | ▶ "Woong Woong" sound | Reduce the noise by adjusting
the pipe and seat rubber | | | Compressor noise | ▶ Poor balance of the compressor ▶ Contacting sound of the
surrounding pipe of the
compressor part | Adjust the surrounding pipe and seat rubber to maintain the level of the compressor Remove contact | | | Operating device noise | Contact sound from the OLP contact point during compressor operation | Exchange OLP | ▶ "Tak Tak" | | Wire condenser
noise (vibration
noise) | ■ "Woong Woong" sound■ "Ching" sound | Recheck the screws Remove the welding part of the heat plate (wire) and remove the heat plate Recheck the screws | | ### 7-2. Details on power consumption The power consumption of the refrigerator is measured within the chamber where constant temperature and humidity is maintained. In the right figure, maintain the chamber to 30°C and 75% humidity with no load to the refrigerator and set the temperature of the left and right compartment to 3°C to measure the power consumption. The power consumption is calculated as follows. Monthly power consumption (kWh/month) = Measured value (kWh/day) x 365 days / 12 months Caution The actual power consumption and the one indicated on the refrigerator can differ due to the using condition. # Major repair method for freezing cycle # Chapter 8. Major repair method for freezing cycle ### 8-1. Major repair work standard for refrigerator using R134a refrigerant | No. | Wor | Work item | | Work standard | Objective | Remarks | |-----|--|--|--------------------------------|--|--|--| | 1 | Openir
for pipe
piping | e and | Min | Pipe part: Within 1 hour
Compressor: Within 10 minutes
Drier: Within 20 minutes | Prevent moisture penetration | Specially manage to half or lower of the prior standard during rain or rainy season. (Especially the water penetration within the piping can be crucial) | | 2 | Weldin | g work | Nitrogen
supply
pressure | Do the welding while supplying the nitrogen. (Nitrogen pressure: .1-0.2kg/cm²) | Prevent oxidization
scale generation
within the pipe from
high temperature
heat during welding | Refer to the Caution section of the major repair part for work methods of each
part. Because the R134a refrigerant has a smaller molecular size than that of R12 refrigerant, special care is needed when welding the pipe because leakage can occur more easily. Do not apply pressure to the parts of the piping before and after the welding. It can cause the pipe to crack and cause leakage. | | 3 | Refrig
erator
cycle | Vacuum
time
Vacuum
degree
Vacuum | Min
Torr | 40 minutes or more
0.03 Torr or below (reference)
Simultaneous vacuum for high
and low pressure | Remove moisture | Manufacturer of 113l/min model WVP-Z: US Asco Note) The model should have a counter-current blocker. The vacuum effect can be increased during a | | | | part
Vacuum
piping | EA | Use manifold for R134a
Model name: 40134A
Manufacturer: US Robin Air | Prevent mixed penetration of mineral oil and ether oil | vacuum with both high and low pressure while operating the compressor. For the refrigerant piping (rubber type), using the existing piping for R12 for the new R134a | | | | Pipe
coupler | EA | For R134a
Model name: PCV630-2SV 1EA
Model name: PCV400-2PV 1EA
Manufacturer: Japanese Nito | Prevent mixed
penetration of R12
refrigerant
Prevent mixed | refrigerant can cause the rubber to be melted (can cause leakage). | | | | Socket
Plug | EA
EA | For R134a
Model name: 2SV
For R134a
Model name: 2PV | penetration of R12
refrigerant
Prohibit mixed use
of R12 refrigerant | | | 4 | Refrigerator
cycle
Refrigerant
measurement
(BOMBE) | | EA | Use the one for R134a and the measurement tolerance is ±5g. Note) If it is -5g for winter and +5g for summer, it is well managed. (manufactured by LG) | Prohibit mixed use of R12 refrigerant | - When measuring the refrigerant, do not measure it in a very hot or cold location (ambient temperature of 25°C is best) When manufacturing an additional bombe, use copper for the material End socket: 2SV plug: Use the proper one for 2PV R134a Note) When welding the connection part of both ends, make sure the internal O ring (rubber) does not burn. | | 5 | Exchange drier | | | - For R134a - When repairing the refrigerator cycle piping, always exchange the drier. | Remove moisture existing within the piping | | | 6 | Leakage test | | | Never do a soap water test. The soap water can leak into the piping from the vibration. Leakage detector model: 16170, 16500. Manufacturer: US Robin Air | Detect refrigerant
leakage part
(for reference) | - For the refrigerant leaking part, check if oil is leaked and if not found, use the electric leakage detector. | # Major repair method for freezing cycle ### 8-2. Introduction to major repair work | Work sequence | Major repair details | Work tools | |---|--|---| | Diagnose problem | | | | Remove
residual
refrigerant | - Cut the end of the drier part (high pressure side) and compressor charging part to remove the refrigerant. | Pliers, nipper | | Exchange and weld parts | Use the compressor, drier, oil and refrigerant for R134a. For the parts with nitrogen sealing and vacuum wrapping, check the "pik" sound before assembling. Use only the ones with proper wrapping and immediately assemble and weld the parts. When welding the parts always substitute the nitrogen. (nitrogen pressure: 0.1-0.2kg/cm²) Major repair work should be done in a clean work space with no humidity. | Pipe cutter, gas welder, nitrogen
gas
Welding rod (silver: IS430B,
copper: BCup-2)
Flux (Hydrux Korea) | | Vacuum | Connect the hose and vacuum pump of the manifold gauge to
the high pressure (drier part) and low pressure side (compressor
refrigerant charging part), and make it vacuum for more than 60
minutes. Vacuuming speed: 113/l/min | Vacuum pump (for R134a),
manifold gauge | | Charge
refrigerant and weld
the sealing | Measure the bombe exclusively provided by LG for R134a within the regulated value ±5g using an electric weight and insert it to the refrigerant charging part of the compressor. (insert refrigerant while operating the refrigerator) Weld carefully after pinching the charging part. | Bombe for R134a (mass cylinder), refrigerant (R134a), manifold gauge, electric weight, punch off pliers, gas welder | | Check the refrigerant leakage and cooling performance | Check for leakage in the re-welded parts Minor leakage: Use the electric leakage detector Major leakage: Use the naked eye or finger to check the oil from the compressor Caution: Do not use soap water for the leakage parts Cooling performance check Check whether the heat emitter is warm by hand. Check if the moisture is formed evenly around the evaporator surface within the refrigerator. | Electric leakage detector, driver (+) | | Arrange the mechanical room and tools | The flux of the silver welding part should be removed with soft brush or wet cloth etc. (Flux can accelerate rusting and cause leakage). The tools for R134a should be wiped off well so that dust and moisture cannot be penetrated and kept in a clean tool box or specified location. | Brass brush, cloth, tool box. | | Move and install | - The installation after moving, should be done in accordance with the installation method of the major repair for the refrigerator. (Maintain a 5cm or more distance from the wall for the model with the cooling fan in the mechanical room.) | | ### 8-3. Caution during major repair | Item | Caution | | | |---------------------------------|--|--|--| | 1. Using tools | 1) Use the parts and tools for R134a. | | | | Removing residual refrigerant | When removing the residual refrigerant always turn the refrigerator off and then wait for more than 5 minutes. (If you work before waiting 5 minutes, the internal oil can leak out.) When removing the refrigerant, first cut the 1. high pressure side (drier part) with a nipper and secondly cut the 2. low pressure side to remove the residual refrigerant. (You must do it in this order. If this order is reversed a great amount of oil can leak out.) | | | | | Evaporator Evaporator Drier High pressure 3-Way side Valve Hot Line Pipe | | | | 3. Exchanging drier | 1) During piping repair and inserting the refrigerant, always use the drier for R134a. | | | | Welding nitrogen substitute | To prevent the oxidization scale from forming within the pipe, weld it while substituting the nitrogen with a constant pressure within the piping. (nitrogen pressure: 0.1-0.2kg/cm²) | | | | 5. Others | Internal cleaning and sealing within the cycle pipe should be done with nitrogen gas or R134a refrigerant. When checking for leakage, use the electric leakage detector. When cutting the pipe, always use the pipe cutter. Be careful not to let moisture penetrate within the cycle. | | | ### 8-4. Actual major repair work #### 8-5. Basic principle for major repair - 1) Follow the safety principles of handling gas. - 2) Use a plate jig (or wet towel), if needed, to prevent any skin burn from wires during welding. (to ensure insulation is not damaged, to prevent safety accidents and to ensure product safety.) - 3) Prevent pipe copper pipe oxidization from overheating during welding. - 4) When doing the welding, make sure the suction tube does not be mixed with the charging tube. (High efficiency pump) ### 8-6. Welding reference diagram | Welding classification | Applied parts | Remarks | |------------------------|--|---------| | Copper | 1,2,3,7,10,13,14,17,20,21,22,24,25,26,27 | | | Silver | 4,5,6,8,9,16 | | | LOKRING | 11,12,18,19 | | ### 8-7. Problem checking procedure #### 8-8. Caution for major repair service #### 8-8-1. Cycle clogged and leaking ■ When exchanging parts, welding or resealing the refrigerant from the cycle being clogged or leaking, always exchange the drier to remove the moisture within the cycle. #### 8-8-2. 3-Way valve service - Because the 3-way value controls the refrigerant with an internal plastic damper, when repairing or exchanging the welding part of the valve, the welding heat can be transmitted to the pipe to deform the plastic damper, causing poor operation. Therefore always service the product in the specified order. - 1) Valve welding part service - For type with a joint pipe in the 3-way valve: When the refrigerant leaked on the joint pipe (a, b, c part) connected to the value, you must exchange the 3-way valve assembly. - (If you have to weld it for a specific reason, cover the body with a wet towel and minimize the heat transmission (below 100°C).) - Valve exchange service (valve problem) You must do the service operation in the
same method as above. - 3) Other cautions - You must insert the capillary tube by 13⁺¹₋₀ for welding. (This is to prevent the clogging of the tube during welding.) - Be careful not to drop or apply high impact to the valve because it can cause damage the internal injection mold part. - (Damage to the internal part can increase the change of poor operation and leakage.) ### Chapter 9. Characteristics of each part ### 9-1. Cycle part function and operating principle #### 9-1-1. Compressor function and operating principle (Back and forth movement type) Compressor is composed of the piston part compressing the refrigerant gas from low to high pressure, the motor part for the operation, and lubricant to accelerate the cooling process and to lubricate the movement. The low pressure refrigerant is distributed overall within the internal space of the compressor and after being compressed, the high pressure refrigerant is exhausted through the pipe connected to the external heat emitter. #### Caution - ► The compressor for service is supplied with nitrogen gas charged and the rubber cap sealed. This is to prevent internal oxidization and the prevent moisture in the atmosphere from penetrating. When removing the cap for exchanging the compressor, you can hear a "pik" sound with nitrogen gas emitting, which means it is a normal product. - If the nitrogen gas is emitted already it means that it is a poor product with moisture penetrated already and this must not be used. - ▶ The center axis of the compressor is easily shifted from external impact. Therefore you must be especially careful from impact when carrying or storing the product. #### 9-1-2. Overload protection relay (O.L.P) structure and function - The overload protection relay cuts the power to protest the motor when the temperature of the compressor rises abnormally or when the overly high current is sent to the compressor motor. - Overload protection relay structure is composed of the bi-metal element that cuts the power based on the temperature and the heater that heats during an over-current. They are attached to the external surface of the compressor and detects the temperature of the compressor. The composing circuit is connected to the compressor motor in direct connection. - When the overload protection relay operates, you can here a "tak" sound and the operation contact point of the bi-metal separates from the fixed contact point. When the heat of the heater is reduced or when the temperature of the compressor is lowered after 3-5 minutes, the bi-metal connects the circuit with another "tak" sound to operate the compressor. #### (Overload relay structure) ### Caution - The overload protection relay detects and operates by both the temperature and the current. Therefore even when the power is not connected, it can still operate when the temperature of the surface is high and it can operate when there is an over-current even with low temperature on the surface. But even though this will not happen in reality, just make sure that the relay operates by a combination of abnormal temperature and current. (But the effect from the current is bigger than that from the temperature.) - ▶ After the overload protection relay operates and it recovers after 3-5 minutes when the heat is lowered, it can still operate again if the surface temperature or current is high. In other words, repeated operation for several hours can cause a customer claim. At this time, adequately cool the compressor and connect the power. Also there is a case when the relay operates but immediately recovers to operate again. At this time, exchange the relay. #### 9-1-3. Starter (P.T.C) function and operating principle - The starter is directly connected to the supplementary coil of the compressor to accelerate the compressor operation. It is internally installed within the external case of the compressor like the overload protection relay. - The starter is generally composed of P.T.C material but in the past there were ones in relay contact point type. P.T.C stands for Positive Temperature Coefficient, referring to a resistance that has a constant value initially (ex 33Ω) but when the power is connected the resistance becomes infinite. To understand the role of the starter you must understand the operating principle of the single phase inductive motor and simple AC circuit. #### 9-1-4. Refrigerant valve #### (1) Function This switches the refrigerant that went through the compressor to the left or right compartment evaporator. #### (2) Operating structure #### (3) Operating principle Controlling the rotating angle of the stepping motor will open/close the outlet pipe entrance by changing the shape of the valve connected to the bottom of the rotor. #### (4) Operating characteristics #### 9-1-5. Motor (mechanical room) #### (1) Function #### Motor cooling (mechanical room) This is the part used for circulating the air within the mechanical room and applies to the wire condenser type. This operates when the compressor operates and the heated refrigerant from the compressor lowers the temperature when passing through the wire condenser and also reduces the temperature of the compressor to improve the performance. #### (2) Operating principle and characteristic #### Characteristic The motor applied to the refrigerator is the shading pole motor of the inductive motors. As shown below, it is a 2 pole device with one pole composed of 2 parts. On the small pole called the shading pole, wire is connected (shorted) called the shading coil. In accordance with the characteristics of the AC motor, the motor switches between + and - to operate but because in the 2 pole device, the N and S pole changes within both poles without left and right rotation, the device cannot rotate without help from an external device. Therefore the shading pole and coil creates the rotating direction for operation. The shading pole motor cannot rotate in reverse direction. Therefore the rotating direction must be set during assembly to rotate in the desired direction. When the AD power is connected to the coil of the shading pole #### Operating principle motor, the central axis of the magnetic field shifts in the bold arrow direction of <Fig. 2>. As the central axis moves, the rotor moves in the same direction to turn the motor. Why does the central axis of the magnetic field shift? <Fig. 1> shows a diagram of AC current changing as time changes. If you look at changes of magnetic velocity in "a' zone where the current abruptly increases, the velocity increases as the current increases in the main pole. But in the shading pole, the negative effect of the velocity increase is generated from the shading coil to reduce the velocity shifting the center of the magnetic field to the main pole. In "b" zone, the change in current is minimal and the negative effect of shading coil is minimal to have the center of the magnetic field in the middle as shown in <Fig. 2>. In "c" zone, the velocity of the main pole decreases but with the negative effect increasing the velocity from the shading pole side, the center shifts to the shading pole side. As shown, the center of the magnetic field shifts from the main pole to the shading pole to rotate the rotor. <Fig. 1> Change of AC current on the pole surface <Fig. 2> Change in magnetic velocity by changes in current #### 9-1-6. Heater #### (1) Introduction When using the refrigerator to realize the fermenting algorithm program, a Kimchi seasoning heater is attached on the external surface of the inner case. #### (2) Heater type and role | Classification | Applied part | Function | Resistance value | Remarks | |----------------|--------------------------------|----------------------|------------------|-------------------------| | Heater | External surface of inner case | For Kimchi seasoning | 165Ω/EA | (Applicable to R-K19**) | #### (3) Poor product: Poor heater ■ Heater assembly (ferment/rice storage) | Problem (parts) | Symptom | Check method | Resolution | |---|------------|--|-------------------------------| | Heat wire disconnected/connecting wire disconnected | Kimchi not | 1. Measure the resistance of both ends of the heater with a tester to see if it is ∞ Ω . | 1. Exchange the product | | 2. Poor terminal contact | seasoned | Measure the resistance of both ends of the heater with a tester to see if it fluctuates. | Properly insert the connector | #### 9-1-7. Capacitor operating principle and temperature characteristics #### (1) Function - 1. Capacitor (C/S): Sometimes called the starting capacitor, it is used to improve the motor operation characteristics in low pressure because the operating torque is weak based on the characteristics of the motor within the compressor of the refrigerator in low voltage areas (85% or less than rated). - 2. Capacitor (C/R): Sometimes called the running capacitor, it is used to improve the operating torque of the motor within the compressor of the refrigerator. (Capacitor for operation) #### (2) Concept When you put dielectric material between two facing electrodes and connect the voltage, the electric charge will be accumulated. This functional device is called a capacitor and the basic structure is as shown in the right figure. #### (3) Poor symptom (product) | Problem (parts) | Symptom | Check method | Resolution | |---|--|--|--------------------------| |
Disconnected
(open)
Shorted
Normal | Compressor does not work. Compressor is heated. OLP is operating. Power fuse is disconnected. (Immediately after exchanging or frequently) | - Measure the both ends of the capacitor with a tester to see if there is no change: $\infty \; \Omega.$ | - Exchange the capacitor | | | 1) Compressor does not work. 2) Compressor is heated. 3) Compressor repeatedly works and stops. 4) OLP is operating. 5) Power fuse is disconnected. (Immediately after exchanging or frequently) | - Measure the both ends of the capacitor with a tester to see if it is 0 $\Omega.$ | - Exchange the capacitor | | | 1) Compressor does not work. 2) Compressor is heated. 3) Compressor repeatedly works and stops. 4) OLP is operating. 5) Power fuse is disconnected. (Immediately after exchanging or frequently) | - Measure the both ends of the capacitor with a tester to see if it decreases and then slowly increases (Move toward 0 Ω and then to ∞ Ω). | - Check other parts | ### Caution - ▶ Before the measurement, short the capacitor with a driver to discharge all the electricity. - ▶ After setting the multiplier rate to maximum within the resistance measuring range, measure while switching the terminals. ## Cautions for disassembling the product ### Chapter 10. Cautions for disassembling the product ### 10-1. PWB (PCB) assembly, main - When disassembling the PWB (PCB) assembly, main located in the mechanical room, be careful so that the lead wires do not touch the edge part. - If the lead wire coating is disconnected or the coating is damaged, it can cause a short circuit. ### 10-2. Frame assembly, display - First left and right Doco case remove. And using the driver, open the slot between the frame display and the case-U to disassemble the unit. At this time, be careful not to apply too much pressure to damage the PWB (PCB) assembly, display or make scratches on frame display and case-U. - * Depending on the mode, the service slot is on the top left or right side. ### Chapter 11. Assembly diagram and service parts list 11-1. Assembly diagram (GR-K192AF) ### 11-2. Service parts list (GR-K192AF) | LOC N | D.DESCRIPTION | GR-K192AF | QTY | |-------|----------------------------------|-------------|-----| | 102A | Leg,Adjust | 4778JA2015A | 2 | | 147A | Bucket,Side Dish(L) | 5074JA1044C | 6 | | 147C | Cover Assembly, Bucket | 3551JA1053G | 6 | | 155C | Decor,Case-R | 3806JA1178G | 1 | | 155D | Decor,Case-L | 3806JA1178H | 1 | | 200A | Door Foam Assembly,Freezer-L | 5433JA0210D | 1 | | 200B | Door Foam Assembly,Freezer-R | 5433JA0206D | 1 | | 203A | Gasket Assembly, Door | 4987JA2010H | 2 | | 207A | Panel Assembly, Metal | 3721JA1042V | 1 | | 212D | Handle,Refrigerator(S) | MEB30203401 | 2 | | 212G | Name Plate Assembly | 3846JD1007B | 1 | | 221A | Hinge Assembly-R | 4775JA1008S | 1 | | 222A | Hinge Assembly-L | 4775JA1008S | 1 | | 230A | Door Assembly,Refrigerator-L | ADC30779206 | 1 | | 230B | Door Assembly,Refrigerator-R | ADC30779205 | 1 | | 233A | Bracket,Cover | 4810JA3136A | 4 | | 234A | Cover,Lead Wire(FRONT) | MCK30268701 | 1 | | 234B | Cover,Lead Wire(BACK) | MCK30268601 | 1 | | 236A | Decor,Holder-R | 3806JA1180A | 1 | | 236B | Decor,Holder-L | 3806JA1180B | 1 | | 243A | Stopper,Door | MJB30230301 | 4 | | 248A | Basket Assembly, Door | 5005JA1013P | 1 | | 248D | Bucket Assembly, Side Dish(L) | 5075JA1025M | 6 | | 249B | Basket,Door(out) | 5004JA1148C | 1 | | 249D | Basket,Door(In) | 5004JA1150D | 1 | | 249G | Basket Assembly, Door (COVER) | AAP30653901 | 1 | | 270A | Frame Assembly, Display | ADV31194701 | 1 | | 281B | Cap,Hinge-L(R) | MBL30229302 | 1 | | 281C | Cap,Hinge-L(L) | 5006JA2064C | 1 | | 281D | Cap,Hinge-R(R) | 5006JA2064D | 1 | | 281E | Cap,Hinge-R(L) | MBL30229301 | 1 | | 283D | Screw,Customzied | 1SZZJA3018B | 1 | | 304A | Cover Assembly, Machinery (Rear) | 3551JA1034D | 1 | | 307A | COMPRESSOR,SET ASSEMBLY | 2521C-A5864 | 1 | | 308A | Thermistor Assembly,PTC | 6748C-0002C | 1 | | 309A | Overload Protect | 6750C-0005Q | 1 | | 310A | Cover,PTC | 3550JA2041C | 1 | | 1
4
4
1
2
2 | |----------------------------| | 4
1
2
2 | | 1
2
2 | | 2 2 | | 2 | | | | | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 2 | | 1 | | 2 | P/No. MFL31842102 DEC., 2006 Printed in Korea